Pattern Collapse-Free Drying with Sacrificial Gap Fill Polymers

Article Preview

Abstract:

This work discusses pattern collapse-free drying by application of a sacrificial polymer during the semiconductor wafer cleaning process. The sacrificial polymer is dispensed onto the wafer, displacing the rinse liquid and subsequently dried to form a solid polymer fill within the patterned structure, providing both mechanical support and a means for dry polymer removal by either plasma or thermal exposure. Polymer film thickness, gap fill capability and removal rate are explored for plasma ashable and thermally removable polymer families.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 282)

Pages:

194-200

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Hattori, in Developments in Surface Contamination and Cleaning: Methods for Surface Cleaning, edited by Rajiv Kohli and K.L. Mittal, William Andrew. 9, 1-22, (2017) and references there-in.

Google Scholar

[2] Vrancken, N.,Vereecke, G., Bal, S., Sergeant, S., Doumen, G., Holsteyns, F., Terryn, H., de Gendt, S.,  Xu, X.M. Solid State Phenomena; 255, 136-140, (2016).

DOI: 10.4028/www.scientific.net/ssp.255.136

Google Scholar

[3] M. Sankarapandian, B. Peethala, D. Canaperi, D. Peter, P. Engesser, H. Okorn-Schmidt, The Risk of Pattern Collapse for Structures in Future Logic Devices,, Solid State Phenomena; 195, 107-109, 20, (2013).

DOI: 10.4028/www.scientific.net/ssp.195.107

Google Scholar

[4] D. Eom, K. Kim, Y. Shina, Drying Performance of Single IPA Dryer to Prevent Pattern Collapse and Watermark., Meeting Abstracts, 41(30), 197–204, (2011).

DOI: 10.1149/1.3630844

Google Scholar

[5] C.H. Kim, MS Yun, TH Hwang, CH Nam, SC Kim, JH Roh, MS Lee, JS An. Improved Drying Technology of Single Wafer Tool by Using Hot IPA/DIW., Solid State Phenomena, 195, 243–246, (2012).

DOI: 10.4028/www.scientific.net/ssp.195.243

Google Scholar

[6] Vereecke G., Xu X.M., Tsai W.K., et al., Partial wetting of aqueous solutions on high aspect ratio nanopillars with hydrophilic surface finish,, ECS Journal of Solid State Science and Technology; 3(1), 3095–3100, (2014).

DOI: 10.1149/2.013401jss

Google Scholar

[7] Y.Le Tiec, C Ventosa, N. Rochat, I. Radu. Water Management on Semiconductor Surfaces., Microelectronic Engineering,  88(12), 3432-3436, (2011).

DOI: 10.1016/j.mee.2010.10.017

Google Scholar

[8] Y Le Tiec. Drying impact on semiconductor surfaces after innovative solvent exposure., Future Fab International. 35, 74-78, (2010).

Google Scholar

[9] H.W. Chen, S. Verhaverbeke, R. Gouk, K. Leschkies, S. Sun, N. Bekiaris, and R. J. Visser. (Invited) Supercritical Drying: A Sustainable Solution to Pattern Collapse of High-Aspect-Ratio and Low-Mechanical-Strength Device Structures., 228th ECS Meeting, 69(8), 119–130 (2015).

DOI: 10.1149/06908.0119ecst

Google Scholar

[10] J. Daley and Y. Hishiro, U.S. Patent No. 7119025B2 (2006).

Google Scholar

[11] M.H. Somervell, B. Rathsack, I. Brown, S. Scheer, J. Hooge,  U.S. Patent No. 9454081 (2016).

Google Scholar

[12] R. Leung, D. Endisch, S. Xie, N. Hacker, Y. Deng, U.S. Patent No. US6653718B2 (2003).

Google Scholar

[13] J.S. Drage, U.S. Patent No. 5858547 (1999).

Google Scholar