[1]
Satpathy B, Jena S, Das S, et al. A comparative study of electrodeposition routes for obtaining silver coatings from a novel and environment-friendly thiosulphate-based cyanide-free electroplating bath[J]. Surface and Coatings Technology, 2021, 424:127680-.
DOI: 10.1016/j.surfcoat.2021.127680
Google Scholar
[2]
Wu B, Xu B S, Zhang B, et al. Preparation and properties of Ni/nano-Al2O3 composite coatings by automatic brush plating[J]. Surface and Coatings Technology, 2007, 201(16-17):6933-6939.
DOI: 10.1016/j.surfcoat.2006.12.022
Google Scholar
[3]
Tan J, Yu T, Xu B, et al. Microstructure and wear resistance of nickel–carbon nanotube composite coating from brush plating technique[J]. Tribology Letters, 2006, 21(2):107-111.
DOI: 10.1007/s11249-006-9025-8
Google Scholar
[4]
Tan N, Liu J, Lou L, et al. Synthesis of Ni/nano-Al2O3 coatings by brush plating with magnetic fields[J]. Royal Society Open Science, 2021(3).
Google Scholar
[5]
Xu P, Shen X, Xin G. Electro-brush plating Ni-Graphene oxide composite coating enhanced corrosion resistance of fluoride ion[J]. Materials Research Express, 2021, 8(2): 026406.
DOI: 10.1088/2053-1591/abe2e1
Google Scholar
[6]
Jiao Z B, Schuh C A. Nanocrystalline Ag-W alloys lose stability upon solute desegregation from grain boundaries[J]. Acta Materialia, 2018, 161:194-206.
DOI: 10.1016/j.actamat.2018.09.014
Google Scholar
[7]
Igarashi N, Chikazawa M, Watanabe T. An Electroplating Bath for Ag-Co Binary Alloy Film[J]. Jitsumu Hyomen Gijutsu, 2009, 51(4):414-419.
DOI: 10.4139/sfj.51.414
Google Scholar
[8]
Liang D, Liu Z, Hilty R D, et al. Electrodeposition of Ag–Ni films from thiourea complexing solutions[J]. Electrochimica Acta, 2012, 82(none).
DOI: 10.1016/j.electacta.2012.04.100
Google Scholar
[9]
Schuh C A, Lu K. Stability of nanocrystalline metals: The role of grain-boundary chemistry and structure[J]. MRS Bulletin, 2021(4).
DOI: 10.1557/s43577-021-00055-x
Google Scholar
[10]
Liu A, Ren X, Wang C, et al. Chong Wang DMH and NA–based cyanide-free silver electroplating bath: a promising alternative to cyanide ones in microelectronics[J]. Ionics, 2021, 27(1):417-422.
DOI: 10.1007/s11581-020-03541-5
Google Scholar
[11]
Arai S, Kikuhara T, Shimizu M, et al. Superior electrical contact characteristics of Ag/CNT composite films formed in a cyanide-free plating bath and tested against corrosion by H2S gas[J]. Materials Letters, 2021, 303:130504-.
DOI: 10.1016/j.matlet.2021.130504
Google Scholar
[12]
Brenner A. Electrodeposition of Alloys - Principles and Practice[M]. Academic Press, 1963.
Google Scholar
[13]
Zhang Z, Zhou F, Lavernia E J. On the analysis of grain size in bulk nanocrystalline materials via x-ray diffraction[J]. Metallurgical & Materials Transactions A, 2003, 34(6):1349-1355.
DOI: 10.1007/s11661-003-0246-2
Google Scholar
[14]
Rupert T J, Schuh C A. Sliding Wear of Nanocrystalline Ni-W: Structural Evolution and the Apparent Breakdown of Archard Scaling[J]. Acta Materialia, 2010, 58(12):4137-4148.
DOI: 10.1016/j.actamat.2010.04.005
Google Scholar
[15]
Rupert T J, Cai W, Schuh C A. Abrasive wear response of nanocrystalline Ni–W alloys across the Hall–Petch breakdown[J]. Wear, 2013, 298-299:120-126.
DOI: 10.1016/j.wear.2013.01.021
Google Scholar