Effects of High Gate Voltage Stress on Threshold Voltage Stability in Planar and Trench SiC Power MOSFETs

Article Preview

Abstract:

Gate oxide reliability is a challenge in SiC MOSFETs particularly due to the presence of high electric field in the dielectric during device operation and blocking, and SiC/SiO2 interfaces suffer from a high density of traps and defects that can cause charge trapping and threshold voltage shift. Highly accelerated gate bias testing can be used for testing gate field effects on device reliability/stability, but care must be taken that the high acceleration biases do not invoke failure mechanisms that fall outside of normal device operation conditions. In this work, we attempt to address that aspect of high voltage gate tests in terms of threshold voltage instability and perform a comparative analysis between commercially available planar and trench SiC MOSFETs.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] J. W. Palmour, L. Cheng, V. Pala, E. V. Brunt, D. J. Lichtenwalner, G-Y Wang, J. Richmond, M. O'Loughlin, S. Ryu, S. T. Allen, A. A. Burk and C. Scozzie, IEEE Int. Symp. on Power Semi. Dev. & IC's (ISPSD), 79-82 (2014).

DOI: 10.1109/ispsd.2014.6855980

Google Scholar

[2] D. J. Lichtenwalner, S.-H. Ryu, B. Hull, S. Allen, and J. W. Palmour, Materials Science Forum, 1090, 93-100 (2023).

DOI: 10.4028/p-3w3s88

Google Scholar

[3] T. Kimoto and H. Watanabe, Appl. Phys. Express 13, 120101 (2020).

Google Scholar

[4] G. Liu, B.R. Tuttle, and S. Dhar, Appl. Phys. Rev. 2, 021307 (2015).

Google Scholar

[5] D.J. Lichtenwalner, S. Sabri, E. van Brunt, B. Hull, S.-H. Ryu, P. Steinmann, A. Romero, S. Ganguly, D.A. Gajewski, S. Allen, and J.W. Palmour, IEEE International Integrated Reliability Workshop (IIRW), 1-6 (2020).

DOI: 10.1109/iirw49815.2020.9312873

Google Scholar

[6] J. Berens and T. Aichinger, IEEE Int. Reliab. Phys. Symp. (IRPS), 1-5 (2021).

Google Scholar

[7] S. Zhu, T. Liu, L. Shi, M. Jin, H. L. R. Maddi, M. H. White, and A. K. Agarwal, IEEE Workshop on Wide Bandgap Power Dev. and Appl. (WiPDA), 1-4 (2021).

Google Scholar

[8] T. Watanabe, Y. Fukui, S. Hino, S. Tomohisa, N. Miura, and K. Nishikawa, IEEE Trans. on Dev. and Mat. Reliab. 23(1), 99-108 (2023).

Google Scholar

[9] L. Shi, T. Liu, S. Zhu, J. Qian, M. Jin, H. L. R. Maddi, M. H. White, and A. K. Agarwal, IEEE Workshop on Wide Bandgap Power Devices & Applications (WiPDA), 45-48, (2022).

DOI: 10.1109/wipda56483.2022.9955295

Google Scholar

[10] S. Lombardo; J. H. Stathis; B. P. Linder; K. L. Pey; F. Palumbo; C. H. Tung, Journal of Appl. Phys. 98(12), 121301 (2005).

Google Scholar

[11] D. J. DiMaria, Solid-State Electr., 41(7), 957-965 (1997).

Google Scholar

[12] D. J. DiMaria; E. Cartier; D. Arnold, Journal of Appl. Phys. 73(7), 3367-3384 (1993).

Google Scholar

[13] M. V. Fischetti, D. J. DiMaria, S. D. Brorson, T. N. Theis, and J. R. Kirtley, Phys. Rev. B 31(12), 8124 (1985).

DOI: 10.1103/physrevb.31.8124

Google Scholar

[14] R. Singh, and A.R. Hefner, Solid-State Electr. 48, 1717-1720, (2004).

Google Scholar

[15] D. K. Schroder, Semiconductor materials and device characterization, 2nd edition, Wiley, (1998).

Google Scholar