Design of Al2O3/LaAlO3/SiO2 Gate Stack on Various Channel Planes for High-Performance 4H-SiC Trench Power MOSFETs

Article Preview

Abstract:

An Al2O3/LaAlO3/SiO2 gate stack is designed and implemented on various trench-gate channel planes for high-performance trench power MOSFETs. The designed high-k gate stack achieves a significant enhancement in the gate blocking capability (~1.73X) and maintains a low interface state density (Dit), in comparison to the SiO2­ gate. Moreover, owing to the implementation of the high-k gate stack, the high-k trench gate MOSFETs conduct a drain current of approximately 1.3 times larger than that of the SiO2 trench gate MOSFETs on all 24 channel planes at the same overdrive voltage (Vgs-Vth) of 10 V. An analysis of the mobility limiting mechanisms on different channel planes reveals that the highest channel mobility on the (1120) channel plane is primarily due to its largest Coulomb scattering mobility and surface roughness scattering mobility.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] T. Hosoi, S. Azumo, Y. Kashiwagi, S. Hosaka, R. Nakamura, S. Mitani, Y. Nakano, H. Asahara, T. Nakamura, T. Kimoto, T. Shimura, and H. Watanabe, in International Electron Devices Meeting (2012), pp.10-13.

DOI: 10.1109/iedm.2012.6478998

Google Scholar

[2] M. Cabello, V. Soler, G. Rius, J. Montserrat, J. Rebollo, and P. Godignon, Materials Science in Semiconductor Processing, 78 (2017).

DOI: 10.1016/j.mssp.2017.10.030

Google Scholar

[3] R. Suri, C.J. Kirkpatrick, D.J. Lichtenwalner, and V. Misra, Appl. Phys. Lett., 96, 042903 (2010).

Google Scholar

[4] M. Suzuki, T. Yamaguchi, N. Fukushima, and M. Koyama, J. Appl. Phys., 103, 034118 (2008).

Google Scholar

[5] L. Huang, Y. Liu, X. Peng, Y. Onozawa, T. Tsuji, N. Fujishima, and J.K.O. Sin, IEEE Trans. Electron Devices, 69, 2 (2022).

Google Scholar

[6] L. Huang, Y. Liu, X. Peng, T. Tsuji, Y. Onozawa, N. Fujishima, and J.K.O. Sin, IEEE Trans. Electron Devices, 70, 2 (2023).

Google Scholar

[7] T. Kimoto and H. Watanabe, Appl. Phys. Exp., 13, 120101 (2020).

Google Scholar

[8] T. Kimoto and J. A. Cooper, Fundamentals of Silicon Carbide Technology (Wiley, Singapore, 2014).

Google Scholar

[9] K. Kutsuki, Y. Watanabe, Y. Yamashita, N. Soejima, K. Kataoka, T. Onishi, K. Yamamoto, and H. Fujiwara, Solid-State Electronics, 157 (2019).

DOI: 10.1016/j.sse.2019.03.027

Google Scholar

[10] H. Yano, H. Nakao, H. Mikami, T. Hatayama, Y. Uraoka, and T. Fuyuki, Appl. Phys. Lett., 90, 042102 (2007).

Google Scholar

[11] K. Kutsuki, E. Kagoshima, T. Onishi, J. Saito, N. Soejima, and Y. Watanabe, in International Electron Devices Meeting (2019), p.20.3.1-20.3.4.

DOI: 10.1109/iedm19573.2019.8993521

Google Scholar

[12] H. Yano, H. Nakao, T. Hatayama, Y. Uraoka and T. Fuyuki, Mater. Sci. Forum, 556-557 (2007).

Google Scholar