Improvement of Reflectance Spectroscopy for Oxide Layers on 4H-SiC

Article Preview

Abstract:

In this work, we investigate the use of reflectance spectroscopy as an accurate, fast, and non-destructive method for measuring the thickness of transparent layers, such as SiO2, with thicknesses below 200 nm for microelectronic applications. To this end, we fabricated different oxides and analyzed their reflectance spectra using reflectance spectroscopy. The results were compared to theoretical reflectance spectra to validate the method. We introduce key factors to ensure accurate measurement by modeling the reflectance spectra of thin oxide layers with thicknesses ≥ 15 nm on 4H-SiC using the transfer matrix method (TMM).

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] T. Kimoto, Material science and device physics in SiC technology for high-voltage power devices, Jpn. J. Appl. Phys. 54 (2015) 40103.

DOI: 10.7567/jjap.54.040103

Google Scholar

[2] K. Zekentes, K. Vasilevskiy (Eds.), Advancing silicon carbide electronics technology, Materials Research Forum LLC, Millersville, 2020.

Google Scholar

[3] O. Stenzel, M. Ohlídal, Optical Characterization of Thin Solid Films, Springer International Publishing, Cham, 2018.

Google Scholar

[4] D. Goustouridis, I. Raptis, T. Mpatzaka, S. Fournari, G. Zisis, P. Petrou, K.G. Beltsios, Non-Destructive Characterization of Selected Types of Films and Other Layers via White Light Reflectance Spectroscopy (WLRS), Micro 2 (2022) 495–507.

DOI: 10.3390/micro2030031

Google Scholar

[5] A. Piegari, E. Masetti, Thin film thickness measurement: A comparison of various techniques, Thin Solid Films 124 (1985) 249–257.

DOI: 10.1016/0040-6090(85)90273-1

Google Scholar

[6] A. Zarzycki, J. Galeano, S. Bargiel, A. Andrieux, C. Gorecki, An Optical Diffuse Reflectance Model for the Characterization of a Si Wafer with an Evaporated SiO₂ Layer, Sensors (Basel) 19 (2019).

DOI: 10.3390/s19040892

Google Scholar

[7] D. Keskar, S. Survase, M. Thakurdesai, Reflectivity simulation by using transfer matrix method, J. Phys.: Conf. Ser. 1913 (2021) 12051.

DOI: 10.1088/1742-6596/1913/1/012051

Google Scholar

[8] R. Weingärtner, M. Bickermann, S. Bushevoy, D. Hofmann, M. Rasp, T.L. Straubinger, P.J. Wellmann, A. Winnacker, Absorption mapping of doping level distribution in n-type and p-type 4H-SiC and 6H-SiC, Materials Science and Engineering: B 80 (2001) 357–361.

DOI: 10.1016/s0921-5107(00)00599-7

Google Scholar

[9] P.J. Wellmann, R. Weingärtner, Determination of doping levels and their distribution in SiC by optical techniques, Materials Science and Engineering: B 102 (2003) 262–268.

DOI: 10.1016/s0921-5107(02)00707-9

Google Scholar

[10] D.D. Firsov, O.S. Komkov, A.Y. Fadeev, A.O. Lebedev, Evaluation of nitrogen incorporation into bulk 4H-SiC grown on seeds of different orientation from optical absorption spectra, J. Phys.: Conf. Ser. 741 (2016) 12043.

DOI: 10.1088/1742-6596/741/1/012043

Google Scholar

[11] E. Biedermann, The optical absorption bands and their anisotropy in the various modifications of SiC, Solid State Communications 3 (1965) 343–346.

DOI: 10.1016/0038-1098(65)90092-x

Google Scholar

[12] J. Schwarz, M. Niebauer, M. Koleśnik-Gray, M. Szabo, L. Baier, P. Chava, A. Erbe, V. Krstić, M. Rommel, A. Hutzler, Correlating Optical Microspectroscopy with 4×4 Transfer Matrix Modeling for Characterizing Birefringent Van der Waals Materials, Small Methods (2023) e2300618.

DOI: 10.1002/smtd.202300618

Google Scholar

[13] I.H. Malitson, Interspecimen Comparison of the Refractive Index of Fused Silica*,†, J. Opt. Soc. Am. 55 (1965) 1205.

DOI: 10.1364/josa.55.001205

Google Scholar

[14] S. Khadivianazar, M.K. Koleśnik-Gray, V. Krstić, R. Weingärtner, B. Kallinger, M. Rommel, Doping Dependence of Optical Constants for n-Type (N) 4H-SiC Substrates, ICSCRM 2019, 18th International Conference on Silicon Carbide & Related Materials, September 29 - October 4, 2019, Kyoto, Japan, (unpublished).

Google Scholar

[15] R. Santbergen, A.H.M. Smets, M. Zeman, Optical model for multilayer structures with coherent, partly coherent and incoherent layers, Optics express 21 Suppl 2 (2013) A262-7.

DOI: 10.1364/oe.21.00a262

Google Scholar