Demonstrating SiC In Situ Rounded Trench Processing Technologies for Future Power Trench MOSFET Applications

Article Preview

Abstract:

Effective control of device geometry is key to mitigating high localized electric fields in next-generation SiC power devices. Advanced trench processing allows for highly tunable trench-gate architectures in trench MOSFETs. By utilizing a two-step inductively coupled plasma reactive ion etch (ICP-RIE) process, a high degree of trench base corner rounding can be achieved, irrespective of trench opening corner geometry prior to post etch treatments. Sentaurus TCAD device modelling highlights the importance of effective electric field dispersion at the gate oxide using rounded trench corners, while I-V characterization of fabricated trench MOS-capacitor devices demonstrate the influence of trench base corner rounding on gate oxide breakdown.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] J. A. Cooper & T. Kimoto, Fundamentals of Silicon Carbide Technology (Wiley, Singapore, 2014)

Google Scholar

[2] B. J. Baliga, Fundamentals of Power Semiconductor Devices 2nd ed. (Springer, Raleigh, 2008)

Google Scholar

[3] J. Broughton, V. Smet, R. Tummala and Y. Joshi, Review of Thermal Packaging Technologies for Automotive Power Electronics for Traction Purposes (J. Electron. Packag. 2018)

DOI: 10.1115/1.4040828

Google Scholar

[4] Z. Wei, H. Fu, X. Yan, S. Li, L. Zhang, J. Wei, S. Liu, W. Sun, W. Wu and S. Bai, Influence of Different Device Structures on the Degradation for Trench-Gate SiC MOSFETs: Taking Avalanche Stress as an Example (Materials, 15(2):457, 2022)

DOI: 10.3390/ma15020457

Google Scholar

[5] M. Sampath, D. Morisette and J. Cooper, A fully self-aligned SiC trench MOSFET with 0.5um channel pitch (ICSCRM 2022 Conference, Davos, 2022)

DOI: 10.4028/p-3gb7i1

Google Scholar

[6] H. Kitai, H. Shiomi and H. Tamaso, 4H-SiC Vertical Gate Trench with a Well-Controlled Shape Uniformly Formed by High Rate Etching and Annealing with Solid Source (International Conference on Solid State Devices and Materials, Sapporo, 2015)

DOI: 10.7567/ssdm.2015.j-2-2

Google Scholar

[7] Y. Kawada, T. Tawara and S. Nakamura, Technology for Controlling Trench Shape in SiC Power MOSFETs (Fuji Electric review, Tokyo, 2009)

Google Scholar

[8] A. Croot, C. Bolton, K. Riddell, H. Ashraf, B. Jones, F. Monaghan, J. Mitchell, M. R. Jennings and O. J. Guy, Rounded Base Corners in SiC Trenches for Power MOSFETs (CS MANTECH Conference, Monterey, 2021)

Google Scholar

[9] H. Ashraf, A. Croot and K. Riddell, US Patent No. 20210175082A1 (2021)

Google Scholar

[10] A. Padovani, D. Z. Gao, A. L. Shluger and L. Larcher, A Microscopic Mechanism of Dielectric Breakdown in SiO2 Films: An Insight from Multi-Scale Modeling (Journal of Applied Physics, 2012)

DOI: 10.1063/1.4979915

Google Scholar

[11] M. Usman and A. Hallén, Radiation-Hard Dielectrics for 4H–SiC: A Comparison Between SiO2 and Al2O3 (IEEE Electron Device Letters, 2011)

DOI: 10.1109/led.2011.2166992

Google Scholar

[12] S. M. Thomas, M. R. Jennings, Y. K. Sharma, C. A. Fisher and P. A. Mawby, Impact of the Oxidation temperature on the Interface Trap Density in 4HSiC MOS Capacitors (Materials Science Forum, 2014)

DOI: 10.4028/www.scientific.net/msf.778-780.599

Google Scholar

[13] G. Liu et al. Effects and Mechanisms of RIE on SiC Inversion Layer Mobility and its Recovery (Applied Surface Science, 2015)

Google Scholar

[14] S. M. Thomas, M. R. Jennings, Y. K. Sharma, C. A. Fisher, P. A. Mawby, Impact of the Oxidation Temperature on the Interface Trap Density in 4HSiC MOS Capacitors (Materials Science Forum, 2014)

DOI: 10.4028/www.scientific.net/msf.778-780.599

Google Scholar

[15] M. R. Jennings et al. On the Ti3SiC2 Metallic Phase Formation for Robust P-Type 4H-SiC Ohmic Contacts (Materials Science Forum, 2014)

Google Scholar