[1]
W. J. Choyke and G. Pensl, "Physical Properties of SiC," MRS Bull., vol. 22, no. 3, p.25–29, Mar. 1997.
DOI: 10.1557/s0883769400032723
Google Scholar
[2]
L. Yang et al., "Analysis of Mobility for 4H-SiC N/P-Channel MOSFETs Up To 300 °C," IEEE Trans. Electron Devices, vol. 68, no. 8, p.3936–3941, Aug. 2021.
DOI: 10.1109/ted.2021.3084908
Google Scholar
[3]
T.-K. Nguyen et al., "Highly sensitive 4H-SiC pressure sensor at cryogenic and elevated temperatures," Mater. Des., vol. 156, p.441–445, Oct. 2018.
DOI: 10.1016/j.matdes.2018.07.014
Google Scholar
[4]
T. Kimoto and J. A. Cooper, Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications. John Wiley & Sons, 2014.
DOI: 10.1002/9781118313534
Google Scholar
[5]
A. Hassan, Y. Savaria, and M. Sawan, "GaN Integration Technology, an Ideal Candidate for High-Temperature Applications: A Review," IEEE Access, vol. 6, p.78790–78802, 2018.
DOI: 10.1109/access.2018.2885285
Google Scholar
[6]
S. B. Isukapati et al., "Monolithic Integration of Lateral HV Power MOSFET with LV CMOS for SiC Power IC Technology," in 2021 33rd International Symposium on Power Semiconductor Devices and ICs (ISPSD), May 2021, p.267–270.
DOI: 10.23919/ispsd50666.2021.9452235
Google Scholar
[7]
J. O. Gonzalez, R. Wu, S. Jahdi, and O. Alatise, "Performance and Reliability Review of 650 V and 900 V Silicon and SiC Devices: MOSFETs, Cascode JFETs and IGBTs," IEEE Trans. Ind. Electron., vol. 67, no. 9, p.7375–7385, Sep. 2020.
DOI: 10.1109/tie.2019.2945299
Google Scholar
[8]
L. F. S. Alves, P. Lefranc, P.-O. Jeannin, and B. Sarrazin, "Review on SiC-MOSFET devices and associated gate drivers," in 2018 IEEE International Conference on Industrial Technology (ICIT), Feb. 2018, p.824–829.
DOI: 10.1109/icit.2018.8352284
Google Scholar
[9]
M. Alexandru et al., "SiC Integrated Circuit Control Electronics for High-Temperature Operation," IEEE Trans. Ind. Electron., vol. 62, no. 5, p.3182–3191, May 2015.
DOI: 10.1109/tie.2014.2379212
Google Scholar
[10]
C.-M. Zetterling, L. Lanni, R. Ghandi, B. G. Malm, and M. Östling, "Future high temperature applications for SiC integrated circuits," Phys. Status Solidi C, vol. 9, no. 7, p.1647–1650, 2012.
DOI: 10.1002/pssc.201100689
Google Scholar
[11]
D. T. Clark et al., "High Temperature Silicon Carbide CMOS Integrated Circuits," Mater. Sci. Forum, vol. 679–680, p.726–729, 2011.
DOI: 10.4028/www.scientific.net/msf.679-680.726
Google Scholar
[12]
K. Moges, T. Hosoi, T. Shimura, and H. Watanabe, "Demonstration of 4H-SiC CMOS circuits consisting of well-balanced n- and p-channel MOSFETs fabricated by ultrahigh-temperature gate oxidation," Appl. Phys. Express, vol. 14, no. 9, p.091006, Aug. 2021.
DOI: 10.35848/1882-0786/ac1c43
Google Scholar
[13]
P. G. Neudeck et al., "Extreme temperature 6H-SiC JFET integrated circuit technology," Phys. Status Solidi A, vol. 206, no. 10, p.2329–2345, 2009.
DOI: 10.1002/pssa.200925188
Google Scholar
[14]
W. Xie, J. A. Cooper, and M. R. Melloch, "Monolithic NMOS digital integrated circuits in 6H-SiC," IEEE Electron Device Lett., vol. 15, no. 11, p.455–457, Nov. 1994.
DOI: 10.1109/55.334665
Google Scholar
[15]
A. M. Vidarsson, J. R. Nicholls, D. Haasmann, S. Dimitrijev, and E. Ö. Sveinbjörnsson, "Detection of near-interface traps in NO annealed 4H-SiC metal oxide semiconductor capacitors combining different electrical characterization methods," J. Appl. Phys., vol. 131, no. 21, p.215702, Jun. 2022.
DOI: 10.1063/5.0086974
Google Scholar
[16]
M. Cabello, V. Soler, G. Rius, J. Montserrat, J. Rebollo, and P. Godignon, "Advanced processing for mobility improvement in 4H-SiC MOSFETs: A review," Mater. Sci. Semicond. Process., vol. 78, p.22–31, May 2018.
DOI: 10.1016/j.mssp.2017.10.030
Google Scholar
[17]
E. K. Ashik et al., "Bias Temperature Instability on SiC n- and p-MOSFETs for High Temperature CMOS Applications," in 2022 IEEE International Reliability Physics Symposium (IRPS), Mar. 2022, p. 3B.4-1-3B.4-8.
DOI: 10.1109/irps48227.2022.9764565
Google Scholar
[18]
M. Okamoto, M. Tanaka, T. Yatsuo, and K. Fukuda, "Fabrication of 4H-SiC p-Channel MOSFET with High Channel Mobility," Mater. Sci. Forum, vol. 527–529, p.1301–1304, 2006.
DOI: 10.4028/www.scientific.net/msf.527-529.1301
Google Scholar
[19]
H. Nemoto et al., "Conduction mechanisms of oxide leakage current in p-channel 4H-SiC MOSFETs," Jpn. J. Appl. Phys., vol. 59, no. 4, p.044003, Mar. 2020.
DOI: 10.35848/1347-4065/ab7ddb
Google Scholar
[20]
M. Florentín, "Irradiation impact on optimized 4H-SiC MOSFETs," Doctoral thesis, Universitat Politècnica de Catalunya, 2016. Accessed: Nov. 01, 2022. [Online]. Available: https://upcommons.upc.edu/handle/2117/96353
Google Scholar
[21]
J. R. Hauser and K. Ahmed, "Characterization of ultra-thin oxides using electrical C-V and I-V measurements," AIP Conf. Proc., vol. 449, no. 1, p.235–239, Nov. 1998.
Google Scholar
[22]
D. K. Schroder, Semiconductor Material and Device Characterization. John Wiley & Sons, 2015.
Google Scholar
[23]
P. Fiorenza, F. Giannazzo, and F. Roccaforte, "Characterization of SiO2/4H-SiC Interfaces in 4H-SiC MOSFETs: A Review," Energies, vol. 12, no. 12, Art. no. 12, Jan. 2019.
DOI: 10.3390/en12122310
Google Scholar
[24]
R. Kies, C. Papadas, G. Pananakakis, and G. Ghibaudo, "Temperature Dependence of Fowler-Nordheim Emission Tunneling Current in MOS Structures," in ESSDERC '94: 24th European Solid State Device Research Conference, Sep. 1994, p.507–510.
DOI: 10.1063/1.360124
Google Scholar
[25]
X. Yang, B. Lee, and V. Misra, "Electrical Characteristics of SiO2 Deposited by Atomic Layer Deposition on 4H–SiC After Nitrous Oxide Anneal," IEEE Trans. Electron Devices, vol. 63, no. 7, p.2826–2830, Jul. 2016.
DOI: 10.1109/TED.2016.2565665
Google Scholar
[26]
M. S. Kang, K. Lawless, B. M. Lee, and V. Misra, "Effect of High Temperature Forming Gas Annealing on Electrical Properties of 4H-SiC Lateral MOSFETs with Lanthanum Silicate and ALD SiO2 Gate Dielectric," Mater. Sci. Forum, vol. 924, p.482–485, 2018.
DOI: 10.4028/www.scientific.net/MSF.924.482
Google Scholar
[27]
M. A. Azim, B. Gorr, H.-J. Christ, M. Heilmaier, U. Koch, and M. Engelhard, "Characterization of Oxidation Kinetics of Mo–Si–B-Based Materials," Oxid. Met., vol. 87, no. 1, p.89–108, Feb. 2017.
DOI: 10.1007/s11085-016-9659-3
Google Scholar
[28]
J. G. Speight, Ed., Lange's Handbook of Chemistry, 17th Edition. McGraw-Hill Education, 2017. Accessed: Mar. 19, 2024. [Online]. Available: https://www.accessengineeringlibrary.com/content/book/9781259586095
Google Scholar
[29]
T. Zheleva, A. Lelis, G. Duscher, F. Liu, I. Levin, and M. Das, "Transition layers at the SiO2∕SiC interface," Appl. Phys. Lett., vol. 93, no. 2, p.022108, Jul. 2008.
DOI: 10.1063/1.2949081
Google Scholar