High Mobility 4H-SiC P-MOSFET via Ultrathin ALD B2O3 Interlayer between SiC and SiO2

Article Preview

Abstract:

This article presents an innovative approach to achieve a high channel mobility for 4H-SiCp-MOSFET via dielectric-semiconductor interface engineering involving atomic layer deposition(ALD) of ultrathin B2O3 and SiO2 stacks. The application of ultrathin boron oxide via ALD introducesa highly manufacturable solution for the passivation of SiC interface. The interface states near valenceband reduces the channel mobility for SiC p-MOSFETs and increases the threshold voltage. Theintroduction of ultrathin B2O3 interlayer reduces the threshold voltage and improves the field effectmobility to 12.60 cm2/Vs while the p-MOSFET without the interlayer provides the mobility of 8.91cm2/Vs. This work also includes the optimization of the post-deposition annealing (PDA) conditionsspecific to ultrathin B2O3 and bulk SiO2 dielectric stack to obtain high field effect channel mobilityfor SiO2/SiC p-MOSFETs.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] W. J. Choyke and G. Pensl, "Physical Properties of SiC," MRS Bull., vol. 22, no. 3, p.25–29, Mar. 1997.

DOI: 10.1557/s0883769400032723

Google Scholar

[2] L. Yang et al., "Analysis of Mobility for 4H-SiC N/P-Channel MOSFETs Up To 300 °C," IEEE Trans. Electron Devices, vol. 68, no. 8, p.3936–3941, Aug. 2021.

DOI: 10.1109/ted.2021.3084908

Google Scholar

[3] T.-K. Nguyen et al., "Highly sensitive 4H-SiC pressure sensor at cryogenic and elevated temperatures," Mater. Des., vol. 156, p.441–445, Oct. 2018.

DOI: 10.1016/j.matdes.2018.07.014

Google Scholar

[4] T. Kimoto and J. A. Cooper, Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications. John Wiley & Sons, 2014.

DOI: 10.1002/9781118313534

Google Scholar

[5] A. Hassan, Y. Savaria, and M. Sawan, "GaN Integration Technology, an Ideal Candidate for High-Temperature Applications: A Review," IEEE Access, vol. 6, p.78790–78802, 2018.

DOI: 10.1109/access.2018.2885285

Google Scholar

[6] S. B. Isukapati et al., "Monolithic Integration of Lateral HV Power MOSFET with LV CMOS for SiC Power IC Technology," in 2021 33rd International Symposium on Power Semiconductor Devices and ICs (ISPSD), May 2021, p.267–270.

DOI: 10.23919/ispsd50666.2021.9452235

Google Scholar

[7] J. O. Gonzalez, R. Wu, S. Jahdi, and O. Alatise, "Performance and Reliability Review of 650 V and 900 V Silicon and SiC Devices: MOSFETs, Cascode JFETs and IGBTs," IEEE Trans. Ind. Electron., vol. 67, no. 9, p.7375–7385, Sep. 2020.

DOI: 10.1109/tie.2019.2945299

Google Scholar

[8] L. F. S. Alves, P. Lefranc, P.-O. Jeannin, and B. Sarrazin, "Review on SiC-MOSFET devices and associated gate drivers," in 2018 IEEE International Conference on Industrial Technology (ICIT), Feb. 2018, p.824–829.

DOI: 10.1109/icit.2018.8352284

Google Scholar

[9] M. Alexandru et al., "SiC Integrated Circuit Control Electronics for High-Temperature Operation," IEEE Trans. Ind. Electron., vol. 62, no. 5, p.3182–3191, May 2015.

DOI: 10.1109/tie.2014.2379212

Google Scholar

[10] C.-M. Zetterling, L. Lanni, R. Ghandi, B. G. Malm, and M. Östling, "Future high temperature applications for SiC integrated circuits," Phys. Status Solidi C, vol. 9, no. 7, p.1647–1650, 2012.

DOI: 10.1002/pssc.201100689

Google Scholar

[11] D. T. Clark et al., "High Temperature Silicon Carbide CMOS Integrated Circuits," Mater. Sci. Forum, vol. 679–680, p.726–729, 2011.

DOI: 10.4028/www.scientific.net/msf.679-680.726

Google Scholar

[12] K. Moges, T. Hosoi, T. Shimura, and H. Watanabe, "Demonstration of 4H-SiC CMOS circuits consisting of well-balanced n- and p-channel MOSFETs fabricated by ultrahigh-temperature gate oxidation," Appl. Phys. Express, vol. 14, no. 9, p.091006, Aug. 2021.

DOI: 10.35848/1882-0786/ac1c43

Google Scholar

[13] P. G. Neudeck et al., "Extreme temperature 6H-SiC JFET integrated circuit technology," Phys. Status Solidi A, vol. 206, no. 10, p.2329–2345, 2009.

DOI: 10.1002/pssa.200925188

Google Scholar

[14] W. Xie, J. A. Cooper, and M. R. Melloch, "Monolithic NMOS digital integrated circuits in 6H-SiC," IEEE Electron Device Lett., vol. 15, no. 11, p.455–457, Nov. 1994.

DOI: 10.1109/55.334665

Google Scholar

[15] A. M. Vidarsson, J. R. Nicholls, D. Haasmann, S. Dimitrijev, and E. Ö. Sveinbjörnsson, "Detection of near-interface traps in NO annealed 4H-SiC metal oxide semiconductor capacitors combining different electrical characterization methods," J. Appl. Phys., vol. 131, no. 21, p.215702, Jun. 2022.

DOI: 10.1063/5.0086974

Google Scholar

[16] M. Cabello, V. Soler, G. Rius, J. Montserrat, J. Rebollo, and P. Godignon, "Advanced processing for mobility improvement in 4H-SiC MOSFETs: A review," Mater. Sci. Semicond. Process., vol. 78, p.22–31, May 2018.

DOI: 10.1016/j.mssp.2017.10.030

Google Scholar

[17] E. K. Ashik et al., "Bias Temperature Instability on SiC n- and p-MOSFETs for High Temperature CMOS Applications," in 2022 IEEE International Reliability Physics Symposium (IRPS), Mar. 2022, p. 3B.4-1-3B.4-8.

DOI: 10.1109/irps48227.2022.9764565

Google Scholar

[18] M. Okamoto, M. Tanaka, T. Yatsuo, and K. Fukuda, "Fabrication of 4H-SiC p-Channel MOSFET with High Channel Mobility," Mater. Sci. Forum, vol. 527–529, p.1301–1304, 2006.

DOI: 10.4028/www.scientific.net/msf.527-529.1301

Google Scholar

[19] H. Nemoto et al., "Conduction mechanisms of oxide leakage current in p-channel 4H-SiC MOSFETs," Jpn. J. Appl. Phys., vol. 59, no. 4, p.044003, Mar. 2020.

DOI: 10.35848/1347-4065/ab7ddb

Google Scholar

[20] M. Florentín, "Irradiation impact on optimized 4H-SiC MOSFETs," Doctoral thesis, Universitat Politècnica de Catalunya, 2016. Accessed: Nov. 01, 2022. [Online]. Available: https://upcommons.upc.edu/handle/2117/96353

Google Scholar

[21] J. R. Hauser and K. Ahmed, "Characterization of ultra-thin oxides using electrical C-V and I-V measurements," AIP Conf. Proc., vol. 449, no. 1, p.235–239, Nov. 1998.

Google Scholar

[22] D. K. Schroder, Semiconductor Material and Device Characterization. John Wiley & Sons, 2015.

Google Scholar

[23] P. Fiorenza, F. Giannazzo, and F. Roccaforte, "Characterization of SiO2/4H-SiC Interfaces in 4H-SiC MOSFETs: A Review," Energies, vol. 12, no. 12, Art. no. 12, Jan. 2019.

DOI: 10.3390/en12122310

Google Scholar

[24] R. Kies, C. Papadas, G. Pananakakis, and G. Ghibaudo, "Temperature Dependence of Fowler-Nordheim Emission Tunneling Current in MOS Structures," in ESSDERC '94: 24th European Solid State Device Research Conference, Sep. 1994, p.507–510.

DOI: 10.1063/1.360124

Google Scholar

[25] X. Yang, B. Lee, and V. Misra, "Electrical Characteristics of SiO2 Deposited by Atomic Layer Deposition on 4H–SiC After Nitrous Oxide Anneal," IEEE Trans. Electron Devices, vol. 63, no. 7, p.2826–2830, Jul. 2016.

DOI: 10.1109/TED.2016.2565665

Google Scholar

[26] M. S. Kang, K. Lawless, B. M. Lee, and V. Misra, "Effect of High Temperature Forming Gas Annealing on Electrical Properties of 4H-SiC Lateral MOSFETs with Lanthanum Silicate and ALD SiO2 Gate Dielectric," Mater. Sci. Forum, vol. 924, p.482–485, 2018.

DOI: 10.4028/www.scientific.net/MSF.924.482

Google Scholar

[27] M. A. Azim, B. Gorr, H.-J. Christ, M. Heilmaier, U. Koch, and M. Engelhard, "Characterization of Oxidation Kinetics of Mo–Si–B-Based Materials," Oxid. Met., vol. 87, no. 1, p.89–108, Feb. 2017.

DOI: 10.1007/s11085-016-9659-3

Google Scholar

[28] J. G. Speight, Ed., Lange's Handbook of Chemistry, 17th Edition. McGraw-Hill Education, 2017. Accessed: Mar. 19, 2024. [Online]. Available: https://www.accessengineeringlibrary.com/content/book/9781259586095

Google Scholar

[29] T. Zheleva, A. Lelis, G. Duscher, F. Liu, I. Levin, and M. Das, "Transition layers at the SiO2∕SiC interface," Appl. Phys. Lett., vol. 93, no. 2, p.022108, Jul. 2008.

DOI: 10.1063/1.2949081

Google Scholar