[1]
K. Vasilevskiy, N. Wright, Historical Introduction to Silicon Carbide Discovery, Properties and Technology, in: K. Zekentes, K. Vasilevskiy (Eds.), Advancing Silicon Carbide Electronics Technology II, Core Technologies of Silicon Carbide Device Processing, Materials Research Forum LLC, Millersville, 2020, pp.1-62.
DOI: 10.21741/9781644900673-1
Google Scholar
[2]
J.W. Palmour, L. Cheng, V. Pala, E.V. Brunt, D.J. Lichtenwalner, G.Y. Wang, J. Richmond, M.O. Loughlin, S. Ryu, S.T. Allen, A.A. Burk, C. Scozzie, Silicon carbide power MOSFETs: Breakthrough performance from 900 V up to 15 kV, 2014 IEEE 26th International Symposium on Power Semiconductor Devices & IC's (ISPSD), 2014, pp.79-82.
DOI: 10.1109/ispsd.2014.6855980
Google Scholar
[3]
Information on www.wolfspeed.com.
Google Scholar
[4]
X. Shen, M.P. Oxley, Y. Puzyrev, B.R. Tuttle, G. Duscher, S.T. Pantelides, Excess carbon in silicon carbide, Journal of Applied Physics 108(12) (2010) 123705.
DOI: 10.1063/1.3517142
Google Scholar
[5]
A. O'Neill, O. Vavasour, S. Russell, F. Arith, J. Urresti, P. Gammon, Dielectrics in Silicon Carbide Devices: Technology and Application, in: K. Zekentes, K. Vasilevskiy (Eds.), Advancing Silicon Carbide Electronics Technology II, Core Technologies of Silicon Carbide Device Processing, Materials Research Forum LLC, Millersville, 2020, pp.63-174.
DOI: 10.21741/9781644900673-2
Google Scholar
[6]
J. Urresti, F. Arith, S. Olsen, N. Wright, A. O'Neill, Design and Analysis of High Mobility Enhancement-Mode 4H-SiC MOSFETs Using a Thin-SiO2/Al2O3 Gate-Stack, IEEE Transactions on Electron Devices 66(4) (2019) 1710-1716.
DOI: 10.1109/ted.2019.2901310
Google Scholar
[7]
F. Arith, J. Urresti, K. Vasilevskiy, S. Olsen, N. Wright, A. O'Neill, Increased Mobility in Enhancement Mode 4H-SiC MOSFET Using a Thin SiO2 / Al2O3 Gate Stack, IEEE Electron Device Letters 39(4) (2018) 564-567.
DOI: 10.1109/led.2018.2807620
Google Scholar
[8]
J. Urresti, F. Arith, K. Vassilevski, A.K. Tiwari, S. Olsen, N.G. Wright, A.G. O'Neill, High-Mobility SiC MOSFETs Using a Thin-SiO2/Al2O3 Gate Stack, Materials Science Forum, Trans Tech Publ, 2018, pp.494-497.
DOI: 10.4028/www.scientific.net/msf.924.494
Google Scholar
[9]
J. Rozen, M. Nagano, H. Tsuchida, Enhancing interface quality by gate dielectric deposition on a nitrogen-conditioned 4H–SiC surface, Journal of Materials Research 28(1) (2013) 28-32.
DOI: 10.1557/jmr.2012.269
Google Scholar
[10]
H. Fujimoto, T. Kobayashi, T. Shimura, H. Watanabe, Improvement of interface properties in SiC(0001) MOS structures by plasma nitridation of SiC surface followed by SiO2 deposition and CO2 annealing, Applied Physics Express 16(7) (2023) 074004.
DOI: 10.35848/1882-0786/ace7ac
Google Scholar
[11]
K.V. Vassilevski, N.G. Wright, I.P. Nikitina, A.B. Horsfall, A.G. O'Neill, M.J. Uren, K.P. Hilton, A.G. Masterton, A.J. Hydes, C.M. Johnson, Protection of selectively implanted and patterned silicon carbide surfaces with graphite capping layer during post-implantation annealing, Semiconductor Science and Technology 20(3) (2005) 271.
DOI: 10.1088/0268-1242/20/3/003
Google Scholar
[12]
P.J. Tobin, Y. Okada, S.A. Ajuria, V. Lakhotia, W.A. Feil, R.I. Hedge, Furnace formation of silicon oxynitride thin dielectrics in nitrous oxide (N2O): The role of nitric oxide (NO), Journal of Applied Physics 75(3) (1994) 1811-1817.
DOI: 10.1063/1.356374
Google Scholar
[13]
D.K. Schroder, Semiconductor material and device characterization, John Wiley & Sons2015.
Google Scholar