Increasing Mobility in 4H-SiC MOSFETs with Deposited Oxide by In-Situ Nitridation of SiC Surface

Article Preview

Abstract:

We present the improvement of SiO2/4H-SiC interface quality and high field-effect (FE) mobility (µFE) in 4H-SiC MOSFETs. This is achieved by introducing a nitrous oxide (N2O) plasma in-situ pre-treatment before gate stack formation using plasma enhanced chemical vapour deposition (PECVD) oxide followed by a post deposition anneal (PDA) in diluted N2O for times ranging from 30 to 120 minutes thereby creating an ultra-thin thermally grown SiO2 layer at the SiO2/4H-SiC interface. MOS capacitors with SiO2 deposited on in-situ pre-treated SiC surfaces had a lower density of interface traps (DIT) for all PDA durations, compared with devices having untreated PECVD oxides or control devices with 30 nm thermally grown oxide. After PDA for 90 minutes, a minimum DIT value of 1.2×1011 cm-2·eV-1 was measured. A peak µFE value reaching 94 cm2/(V·s) was measured in n-channel planar MOSFETs fabricated with PECVD oxide on in-situ pre-treated devices, which significantly exceeds a maximum µFE of 6 cm2/(V·s) in control devices.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] K. Vasilevskiy, N. Wright, Historical Introduction to Silicon Carbide Discovery, Properties and Technology, in: K. Zekentes, K. Vasilevskiy (Eds.), Advancing Silicon Carbide Electronics Technology II, Core Technologies of Silicon Carbide Device Processing, Materials Research Forum LLC, Millersville, 2020, pp.1-62.

DOI: 10.21741/9781644900673-1

Google Scholar

[2] J.W. Palmour, L. Cheng, V. Pala, E.V. Brunt, D.J. Lichtenwalner, G.Y. Wang, J. Richmond, M.O. Loughlin, S. Ryu, S.T. Allen, A.A. Burk, C. Scozzie, Silicon carbide power MOSFETs: Breakthrough performance from 900 V up to 15 kV, 2014 IEEE 26th International Symposium on Power Semiconductor Devices & IC's (ISPSD), 2014, pp.79-82.

DOI: 10.1109/ispsd.2014.6855980

Google Scholar

[3] Information on www.wolfspeed.com.

Google Scholar

[4] X. Shen, M.P. Oxley, Y. Puzyrev, B.R. Tuttle, G. Duscher, S.T. Pantelides, Excess carbon in silicon carbide, Journal of Applied Physics 108(12) (2010) 123705.

DOI: 10.1063/1.3517142

Google Scholar

[5] A. O'Neill, O. Vavasour, S. Russell, F. Arith, J. Urresti, P. Gammon, Dielectrics in Silicon Carbide Devices: Technology and Application, in: K. Zekentes, K. Vasilevskiy (Eds.), Advancing Silicon Carbide Electronics Technology II, Core Technologies of Silicon Carbide Device Processing, Materials Research Forum LLC, Millersville, 2020, pp.63-174.

DOI: 10.21741/9781644900673-2

Google Scholar

[6] J. Urresti, F. Arith, S. Olsen, N. Wright, A. O'Neill, Design and Analysis of High Mobility Enhancement-Mode 4H-SiC MOSFETs Using a Thin-SiO2/Al2O3 Gate-Stack, IEEE Transactions on Electron Devices 66(4) (2019) 1710-1716.

DOI: 10.1109/ted.2019.2901310

Google Scholar

[7] F. Arith, J. Urresti, K. Vasilevskiy, S. Olsen, N. Wright, A. O'Neill, Increased Mobility in Enhancement Mode 4H-SiC MOSFET Using a Thin SiO2 / Al2O3 Gate Stack, IEEE Electron Device Letters 39(4) (2018) 564-567.

DOI: 10.1109/led.2018.2807620

Google Scholar

[8] J. Urresti, F. Arith, K. Vassilevski, A.K. Tiwari, S. Olsen, N.G. Wright, A.G. O'Neill, High-Mobility SiC MOSFETs Using a Thin-SiO2/Al2O3 Gate Stack, Materials Science Forum, Trans Tech Publ, 2018, pp.494-497.

DOI: 10.4028/www.scientific.net/msf.924.494

Google Scholar

[9] J. Rozen, M. Nagano, H. Tsuchida, Enhancing interface quality by gate dielectric deposition on a nitrogen-conditioned 4H–SiC surface, Journal of Materials Research 28(1) (2013) 28-32.

DOI: 10.1557/jmr.2012.269

Google Scholar

[10] H. Fujimoto, T. Kobayashi, T. Shimura, H. Watanabe, Improvement of interface properties in SiC(0001) MOS structures by plasma nitridation of SiC surface followed by SiO2 deposition and CO2 annealing, Applied Physics Express 16(7) (2023) 074004.

DOI: 10.35848/1882-0786/ace7ac

Google Scholar

[11] K.V. Vassilevski, N.G. Wright, I.P. Nikitina, A.B. Horsfall, A.G. O'Neill, M.J. Uren, K.P. Hilton, A.G. Masterton, A.J. Hydes, C.M. Johnson, Protection of selectively implanted and patterned silicon carbide surfaces with graphite capping layer during post-implantation annealing, Semiconductor Science and Technology 20(3) (2005) 271.

DOI: 10.1088/0268-1242/20/3/003

Google Scholar

[12] P.J. Tobin, Y. Okada, S.A. Ajuria, V. Lakhotia, W.A. Feil, R.I. Hedge, Furnace formation of silicon oxynitride thin dielectrics in nitrous oxide (N2O): The role of nitric oxide (NO), Journal of Applied Physics 75(3) (1994) 1811-1817.

DOI: 10.1063/1.356374

Google Scholar

[13] D.K. Schroder, Semiconductor material and device characterization, John Wiley & Sons2015.

Google Scholar