[1]
Leitz C, Currie M, Lee M, Zheng H, Antoniadis D and Fitzgerald E, Strained Si, SiGe, and Ge channels for high-mobility metal-oxide-semiconductor field-effect transistors, Appl. Phys. Lett , vol. 79, p.4246, (2001).
DOI: 10.1063/1.1423774
Google Scholar
[2]
JL Hoyt, HM Nayfeh, S. Eguchi et al., Strained silicon MOSFET technology, IEDM, pp.23-26, (2002).
Google Scholar
[3]
H. Z. Yin, K. D. Hobart, R. L. Peterson et al 2005 IEEE Trans. on Electron Devices 52 2207.
Google Scholar
[4]
I. Lauer, T. A. Langdo, Z. Y. Cheng et al 2004 IEEE EDL 25 83.
Google Scholar
[5]
K. Rim, K. Chan, L. Shi et al. 2003 IEDM Tech. Dig 311.
Google Scholar
[6]
H. Yin, K. D. Hobart, R. L. Peterson et al 2003 IEDM Tech. Dig 321.
Google Scholar
[7]
Maiti C, Bera L, Chattopadhyay S, Strained-Si heterostructure field effect transistors, Semicond. Sci. Technol vol. 13, p.1225, (1998).
DOI: 10.1088/0268-1242/13/11/002
Google Scholar
[8]
Lee M, Leitz C, Cheng Z et al., Strained Ge channel p-type metal–oxide–semiconductor-field-effect transistors grown on SiGe/Si virtual substrates, Appl. Phys. Lett, vol. 79, p.3344 (2001).
DOI: 10.1063/1.1417515
Google Scholar
[9]
Olsen S, O'Neill A, Chattopadhyay S et al., Study of strain relaxation in Si/SiGe metal-oxide-semiconductor- field-effect transistors, J. Appl. Phys. vol. 94, p.6855, (2003).
Google Scholar
[10]
Douglas J Paul, Si/SiGe heterostructures: from material and physics to devices and circuits, Semicond. Sci. Technol. vol. 19, no. 10, R75, Oct (2004).
DOI: 10.1088/0268-1242/19/10/r02
Google Scholar
[11]
Nayfeh H, Hoyt J and Antoniadis D, A physically based analytical model for the threshold voltage of strained-Si n-MOSFETs, IEEE Trans. on Electron Devices. vol. 51, p.2069, Dec. (2004).
DOI: 10.1109/ted.2004.838320
Google Scholar
[12]
Jung-Suk Goo, Qi X, Takamura Y et al., Band offset induced threshold variation in strained-Si nMOSFETs, IEEE Electron Device Lett. vol. 50, p.568, 2003. q.
DOI: 10.1109/led.2003.815431
Google Scholar