Synthesis of Carbon Encapsulated Nickel Nanoparticles by Laser Ablation in Liquid

Article Preview

Abstract:

Carbon encapsulated nickel nanoparticles (CENNPs) with high purity were fabricated by laser ablation of nickel target in ethanol. The size of CENNPs varies from tens to hundreds of nanometers, and CENNPs show two kinds of typical morphologies i. e. a nickel core with a carbon shell or a nickel core with two carbon shells. Transmission electron microscopy indicated that the CENNPs formed as a result of laser evaporation of the nickel target and the decomposition of ethanol, whose carbon atoms mixed with the nickel vapor, and Ni/C liquid droplets appeared during the cooling stage. The carbon shells formed by precipitation of carbon atoms on the surface of the nickel cores led to the formation of CENNPs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

5487-5494

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. E. McHenry, S. A. Majetich, J. O. Artman, M. DeGraef, S. W. Staley, Superparamagnetism in carbon-coated Co particles produced by the Kratschmer carbon arc process, Phys. Rev. B, vol. 49, pp.11358-63, (1994).

DOI: 10.1103/physrevb.49.11358

Google Scholar

[2] S. Subramoney, Novel Nanocarbons-Structure, Properties, and Potential Applications, Adv. Mater, vol. 10, pp.1157-71, (1998).

DOI: 10.1002/(sici)1521-4095(199810)10:15<1157::aid-adma1157>3.0.co;2-n

Google Scholar

[3] X. L. Dong, Z. D. Zhang, S. R. Jin, B. K. Kim, Carbon-coated Fe–Co(C) nanocapsules prepared by arc discharge in methane, J. Appl Phys, vol. 86, pp.6701-06, (1999).

DOI: 10.1063/1.371747

Google Scholar

[4] W. Teunissen, F. M. F. de Groot, J. Geus, The structure of carbon encapsulated NiFe nanoparticles, J. Catal, vol. 204, pp.169-74, (2001).

DOI: 10.1006/jcat.2001.3373

Google Scholar

[5] J. H. Scott, S. A. Majetich, Morphology, structure, and growth of nanoparticles produced in a carbon arc, Phys. Rev. B, vol. 52, pp.12564-70, (1995).

DOI: 10.1103/physrevb.52.12564

Google Scholar

[6] S. Seraphin, D. Zhou, J. Jiao, Filling the carbon nanocages, J. Appl. Phys, vol. 80, pp.2097-104, (1996).

Google Scholar

[7] E. Flahaut, F. Agnoli, J. Sloan, C. O'Connor, M. L. H. Green, CCVD Synthesis and Characterization of Cobalt-Encapsulated Nanoparticles, Chem. Mater, vol. 14, pp.2553-8, (2002).

DOI: 10.1021/cm011287h

Google Scholar

[8] Y. Lu, Z. P. Zhu, Z. Y. Liu, Carbon-encapsulated Fe nanoparticles from detonation-induced pyrolysis of ferrocene, Carbon, vol. 43, pp.369-374, (2005).

DOI: 10.1016/j.carbon.2004.09.020

Google Scholar

[9] B. H. Liu, J. Ding, Z. Y. Zhong, Z. L. Dong, T. White, J. Y. Lin, Large-scale preparation of carbon-encapsulated cobalt nanoparticles by the catalytic method, Chem. Phys. Lett, vol. 358, pp.96-102, (2002).

DOI: 10.1016/s0009-2614(02)00592-4

Google Scholar

[10] W. Z. Wu, Z. P. Zhu, Z. Y. Liu, A study of the explosion of Fe–C hybrid xerogels and the solid products, Carbon, vol. 41, pp.309-15, (2003).

DOI: 10.1016/s0008-6223(02)00291-9

Google Scholar

[11] X. W. Wei, G. X. Zhu, C. J. Xia, Y. Ye, A solution phase fabrication of magnetic nanoparticles encapsulated in carbon, Nanotechnology, vol. 17, pp.4307-11, (2006).

DOI: 10.1088/0957-4484/17/17/004

Google Scholar

[12] J. N. Wang, L. Zhang, F. Yu, Z. M. Sheng, Synthesis of Carbon Encapsulated Magnetic Nanoparticles with Giant Coercivity by a Spray Pyrolysis Approach, J. Phys. Chem. B, vol. 111, pp.2119-24, (2007).

DOI: 10.1021/jp0674118

Google Scholar

[13] H. Chen, R. B. Huang, Z. C. Tang, L. S. Zheng, Single titanium crystals encapsulated in carbon nanocages obtained by laser vaporization of sponge titanium in benzene vapor, Appl. Phys. Lett, vol. 77, pp.91-3, (2000).

DOI: 10.1063/1.126887

Google Scholar

[14] F. Kokai, Y. Yamda, T. Sunouchi, A. Koshio, Catalytic growth of nickel-encapsulated and hollow graphitic carbon nanoparticles during laser vaporization of cellulose char containing nickel, Appl. Phys. A- Mater, vol. 81, pp.1595-99, (2005).

DOI: 10.1007/s00339-005-3382-2

Google Scholar

[15] G. W. Yang, Laser ablation in liquids, pp. Applications in the synthesis of nanocrystals, Prog. Mater. Sci, vol. 52, pp.648-98, (2007).

Google Scholar

[16] W. J. Qin, X. B. Yang, Y. W. Lu, J. Sun, S. A. Kulinich, and X. W. Du, Silicon nanodisks via a chemical route, Chem. Mater, vol. 20, pp.3892-3896, (2008).

DOI: 10.1021/cm800037f

Google Scholar

[17] S. L. Hu, J. Sun, X. W. Du, F. Tian, L. Jiang, The formation of multiply twinning structure and photoluminescence of well-dispersed nanodiamonds produced by pulsed-laser irradiation, Diamond Relat. Mater, vol. 17, p.142, (2008).

DOI: 10.1016/j.diamond.2007.11.009

Google Scholar

[18] L Berthe., R. Fabbro, P. Peyer, E. J. Bartnicki, Wavelength dependent of laser shock-wave generation in the water-confinement regime, J. Appl. Phys, vol. 85, pp.7552-7555, (1999).

DOI: 10.1063/1.370553

Google Scholar

[19] S. L Hu, J. Sun, X. W. Du, L. Jiang, Y. W. Lei, Ultra-fine diamond synthesized by long-pulse-width laser, Appl. Phys. Lett, vol. 89, p.183115, (2006).

DOI: 10.1063/1.2385210

Google Scholar

[20] F. Cleri, V. Rosato, Tight-binding potentials for transition metals and alloys, Phys. Rev. B, vol. 48, pp.22-32, (1993).

DOI: 10.1103/physrevb.48.22

Google Scholar