Temporary Resistive Switching Effect in Cu2O Based Heterostructure

Article Preview

Abstract:

We report a temporary resistive switching (RS) behavior of Cu2O based heterostructure. The Cu2O films were deposited by PLD method under different oxygen pressure (10-2 Pa and 10Pa). The results show that the RS performance of Cu2O (10Pa) is better than that of Cu2O (10-2 Pa). The Cu2O (10Pa) based heterostructure shows high resistive switching ratio of over 103 at read voltage of -0.5V after applied 3V/-5V pulse voltages. Moreover, the resistance states could be switched reversibly among multilevel resistance states by changing the magnitude of set or reset pulse voltages. It is demonstrated that the RS mechanism agrees with the carrier injection-trapped/detrapped process at the interface.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

836-839

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Waser, R. Dittmann, G. Staikov, K. Szot, Advanced Materials, Vol. 21 (2009), p.2632.

Google Scholar

[2] D.S. Jeong, R. Thomas, R.S. Katiyar, J.F. Scott, H. Kohlstedt, A. Petraru, C.S. Hwang, Reports on Progress in Physics, Vol. 75 (2012), p.076502.

DOI: 10.1088/0034-4885/75/7/076502

Google Scholar

[3] D.H. Kwon, K.M. Kim, J.H. Jang, J.M. Jeon, M.H. Lee, G.H. Kim, X.S. Li, G.S. Park, B. Lee, S. Han, M. Kim, C.S. Hwang, Nature Nanotechnology, Vol. 5 (2010), p.148.

DOI: 10.1038/nnano.2009.456

Google Scholar

[4] T. Fujii, M. Kawasaki, A. Sawa, Y. Kawazoe, H. Akoh, Y. Tokura, Physical Review B, Vol. 75 (2007), p.165101.

Google Scholar

[5] B. Hu, X. Zhu, X. Chen, L. Pan, S. Peng, Y. Wu, J. Shang, G. Liu, Q. Yan, R.W. Li, Journal of the American Chemical Society, Vol. 134 (2012), p.17408.

Google Scholar

[6] M. Li, F. Zhuge, X. Zhu, K. Yin, J. Wang, Y. Liu, C. He, B. Chen, R.W. Li, Nanotechnology, Vol. 21 (2010), p.425202.

Google Scholar

[7] Z. Xu, K. Jin, L. Gu, Y. Jin, C. Ge, C. Wang, H. Guo, H. Lu, R. Zhao, G. Yang, Small, Vol. 8 (2012), p.1279.

Google Scholar

[8] M.C. Ni, S.M. Guo, H.F. Tian, Y.G. Zhao, J.Q. Li, Applied Physics Letters, Vol. 91 (2007), p.183502.

Google Scholar

[9] C. Wang, K.J. Jin, Z.T. Xu, L. Wang, C. Ge, H. -B. Lu, H.Z. Guo, M. He, G.Z. Yang, Applied Physics Letters, Vol. 98 (2011), p.192901.

Google Scholar

[10] A. Sawa, Materials Today, Vol. 11 (2008), p.28.

Google Scholar

[11] R. Waser, M. Aono, Nature materials, Vol. 6 (2007), p.833.

Google Scholar

[12] K.M. Kim, D.S. Jeong, C.S. Hwang, Nanotechnology, Vol. 22 (2011), p.254002.

Google Scholar

[13] Y. Zhu, M. Li, H. Zhou, Z. Hu, X. Liu, H. Liao, Semiconductor Science and Technology, Vol. 28 (2013), p.015023.

Google Scholar

[14] Y. Zhu, M. Li, H. Zhou, Z. Hu, X. Liu, X. Fang, B. Sebo, G. Fang, X. Zhao, Journal of Physics D: Applied Physics, Vol. 45 (2012), p.375303.

Google Scholar