Effect of CW-CO2 Laser Evaporation Parameters on Structural and Physical Properties of ZnSe Film

Article Preview

Abstract:

ZnSe thin films were deposited onto glass substrates by CW-CO2 laser evaporation with the various evaporation times and laser power. SEM studies showed that the thicknesses of deposited films were varied from 176 nm to 1824 nm. AFM studies showed that the surface roughnesses were varied from 2.4 nm to 5.1 nm. The structure of deposited films were indicated by XRD technique which the result showed the cubic structure. The average crystallite sizes were calculated from the XRD pattern with ranged between 23.8 nm and 31.7 nm. The transmission spectates were ranged from 250 nm to 900 nm. The values of the optical bandgap energies determined from the absorption spectra were ranged between 2.61 eV and 2.88 eV. This paper presents the simple and low cost technique for ZnSe film deposition. Another advantage of this research is the high-precision control of thickness by the variation of the evaporation time and laser power.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

12-18

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Rumberg, Ch. Sommerhalter, M. Toplak, A. Jäger-Waldau, and M. Ch. Lux-Steiner: Thin Solid Films, Vol. 361-362 (2000), p.172.

DOI: 10.1016/s0040-6090(99)00790-7

Google Scholar

[2] K. Katayama, H. Matsubara, F. Nakanishi, T. Nakamura, H. Doi, A. Saegusa, T. Mitsui, T. Matsuoka, M. Irikura, T. Takebe, S. Nishine, and T. Shirakawa: Materials Science in Semiconductor Processing, Vol. 10 (2007), p.128.

DOI: 10.1016/s0022-0248(00)00275-x

Google Scholar

[3] L. Pan, X.Y. Qin, and M. Liu: Solid State Sciences, Vol. 12 (2010), p.257.

Google Scholar

[4] G.L. Agawane, S.W. Shin, M.P. Suryawanshi, K.V. Gurav, A.V. Moholkar, J.Y. Lee, P.S. Patil, J.H. Yun, and J. H. Kim: Ceramics International, Vol. 40 (2014), p.367.

DOI: 10.1016/j.ceramint.2013.06.011

Google Scholar

[5] V. Dhanasekaran, T. Mahalingam, Jin-Koo Rhee, and J.P. Chu: Optik, Vol. 124 (2013), p.255.

Google Scholar

[6] H. Jiang, X. Yao, J. Che, and M. Wang: Materials Research Bulletin, Vol. 41 (2004), p.2349.

Google Scholar

[7] N. Vivet, J.L. Doualan, M. Morales, and M. Levalois: Journal of Luminescence, Vol. 130 (2010), p.1449.

Google Scholar

[8] S. Venkatachalam, S. Agilan, D. Mangalaraj, and Sa.K. Narayandass: Materials Science in Semiconductor Processing, Vol. 10 (2007), p.128.

DOI: 10.1016/j.mssp.2007.06.001

Google Scholar

[9] J.S. Kim, J.H. Song, and S.H. Suh: Materials Science in Semiconductor Processing, Vol. 3 (2000), p.201.

Google Scholar

[10] W.W. Jiang, S.L. Zhao, F.J. Zhang, and Z. Xu: Materials Science in Semiconductor Processing, Vol. 13 (2010), p.360.

Google Scholar

[11] T.M. Khan, M. Zakria, M. Ahmad, and R.I. Shakoor: Journal of Luminescence, Vol. 147 (2014), p.97.

Google Scholar

[12] H. Eilers: Materials Letters, Vol. 62 (2008), p.967.

Google Scholar

[13] X.J. Yin, G.R. Lai, J.S. Chen, and J.S. Kao: Surface and Coatings Technology, Vol. 90 (1997), p.239.

Google Scholar

[14] K. Grytsenko, O. Lytvyn, L.F. Ivanov, P.N. Grakovich, M. Sonntag, and S. Schrader: Applied Surface Science, Vol. 253 (2007), p.8028.

DOI: 10.1016/j.apsusc.2007.02.080

Google Scholar

[15] M. Ashraf, S.M.J. Akhtar, A.F. Khan, Z. Ali, and A. Qayyum: Journal of Alloys and Compounds, Vol. 509 (2011), p.2414.

Google Scholar

[16] G.I. Rusu, V. Ciupina, M.E. Popa, G. Prodan, G.G. Rusu, and C. Baban: Journal of Non-Crystalline Solids, Vol. 352 (2006), p.1525.

DOI: 10.1016/j.jnoncrysol.2006.01.029

Google Scholar