Hydrogen Storage by Physisorption: An Overview

Article Preview

Abstract:

Hydrogen is the lightest and most abundant element in the universe and an energy carrier. It can be produced from several sources using various methods, such as, electrolysis of water or reforming of hydrocarbons like, natural gas can produce hydrogen in a big plant or fuelling stations. When it is produced using renewable energy sources such as wind, solar, geothermal, or hydroelectric power, it supports the zero emissions approach. Hydrogen powdered electricity generation, whether it is for vehicles, or others, it can be carried out mainly in two ways: burning hydrogen in an internal combustion engine, or reacting hydrogen with oxygen in a fuel cell. Above all, we need to have proper storage facility available at the production and as well as at the utilization site. There are several hydrogen storage technology available such as compressed storage; liquid hydrogen storage; metal hydrides, chemical hydride and by sorption in some porous medium. In this review article, some of the important finding in hydrogen storage materials for physical absorption methods has been discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

157-172

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V.S. Arunachalam, E.L. Fleischer, The Global Energy Landscape and Materilas innovation, MRS Bulletin, 33(4) (2008) 264-276; G. W. Crabtree, M.S. Dresselhaus, The Hydrogen Fuel Alternative, MRS Bull. 33(4) (2008) 421-428.

DOI: 10.1557/mrs2008.84

Google Scholar

[2] A. Züttel, Hydrogen storage methods, Naturwissenschaften, 91 (2004) 157-172; S. Shi, J. -Y Hwang, Int. J. Hydr. Energy. 32 (2007) 224-228.

Google Scholar

[3] E. Fontes, E. Nilsson, Modeling the fuel cell, Industrial Physicist, 7(4) (2001) 14-17; A.W.C. van den Berg, C.O. Areán, Materials for hydrogen storage: current research trends and perspectives, Chem. Commun. 2008, 668-681, DOI: 10. 1039/b712576n.

DOI: 10.1039/b712576n

Google Scholar

[4] E.K. Stefanakos, D.Y. Goswami, S.S. Srinivasan, J.T. Wolan, Hydrogen Energy, in: Kutz, Myer, (Eds. ), Environmentally Conscious Alternative Energy Production, John Wiley & Sons, Inc., 2007, p.165.

DOI: 10.1002/9780470209738.ch7

Google Scholar

[5] S. Satyapal, J. Petrovic, G. Thomas, Gassing Up With HydrogenSci. Am. 2007, 296 (2007).

Google Scholar

[6] S.J. Cho, K.S. Song, J.W. Kim, T.H. Kim, K. Choo, Hydrogen sorption in HCl-treated polyaniline and polypyrrole: new potential hydrogen storage media, ACS Division of Fuel Chemistry, Preprints, 47(2) (2002).

Google Scholar

[7] T.A. Strobel, C.J. Taylor, K.C. Hester, S.F. Dec, C.A. Koh, K.T. Miller, E.D. Sloan, Molecular Hydrogen Storage in Binary THF-H2 Clathrate Hydrates, J. Phys. Chem. B 110 (2006) 17121-17125.

DOI: 10.1021/jp062139n

Google Scholar

[8] R.A. Kerr, A Worrying Trend of Less Ice, Higher Seas, Science, 311 (2006) 1698-1701.

DOI: 10.1126/science.311.5768.1698

Google Scholar

[9] C.M. White, R.R. Steeper, A.E. Lutz, The hydrogen-fueled internal combustion engine: a technical review, Int. J. Hydr. Energy. 31 (2006) 1292-1305.

DOI: 10.1016/j.ijhydene.2005.12.001

Google Scholar

[10] D.Y. Kim, Y. Park, H. Lee, Tuning clathrate hydrates: Application to hydrogen storage , Catal. Today 120(3-4) (2007) 257-261.

DOI: 10.1016/j.cattod.2006.09.001

Google Scholar

[11] S. -H. Jhi, A theoretical study of nanoporous organic molecules for hydrogen, Microporous Mesoporous Materials, 89 (2005) 138-142.

DOI: 10.1016/j.micromeso.2005.10.007

Google Scholar

[12] E. Poirier, R. Chahine, P. Be´nard, D. Cossement, L. Lafi, E. Me´lancon, T.K. Bose, S. De´silets, Storage of hydrogen on single-walled carbon nanotubes and other carbon structures, Appl. Phys. A 78 (2004) 961-967.

DOI: 10.1007/s00339-003-2415-y

Google Scholar

[13] M. Hirscher, B. Panella, Nanostructures with high surface area for hydrogen storage, J. Alloys Compd. 404–406 (2005) 399-401.

DOI: 10.1016/j.jallcom.2004.11.109

Google Scholar

[14] K.M. Thomas, Hydrogen adsorption and storage on porous materials, Catal. Today 120 (2007) 389-398.

Google Scholar

[15] P. Be´nard, R. Chahine, P.A. Chandonia, D. Cossement, G. Dorval-Douville, L. Lafi, P. Lachance, R. Paggiaro, E. Poirier, Comparison of hydrogen adsorption on nanoporous materials, J. Alloys Compd. 446/447 (2007) 380-384.

DOI: 10.1016/j.jallcom.2006.11.192

Google Scholar

[16] S.K. Bhatia, A.L. Myers, Optimum Conditions for Adsorptive Storage, Langmuir 22 (2006).

Google Scholar

[17] T. Heine, L. Zhechkov, G. Seifert, Hydrogen storage by physisorption on nanostructured graphite platelets, PCCP 6 (2004) 980-984.

DOI: 10.1002/chin.200422018

Google Scholar

[18] P. Kowalczyk, R. Holyst, M. Terrones, H. Terrones, Hydrogen storage in nanoporous carbon materials: myth and facts, PCCP 9 (2007) 1786-1792.

DOI: 10.1039/b618747a

Google Scholar

[19] H. Jin, Y.S. Lee, I. Hong, Hydrogen adsorption characteristics of activated carbon, Catal. Today 120 (2007) 399-406.

DOI: 10.1016/j.cattod.2006.09.012

Google Scholar

[20] W.C. Xu, K. Takahashi, Y. Matsuo, Y. Hattori, M. Kumagai, S. Ishiyama, K. Kaneko, S. Iijima, Investigation of hydrogen storage capacity of various carbon materials, Int. J. Hydr. Energy. 32 (2007) 2504-2512.

DOI: 10.1016/j.ijhydene.2006.11.012

Google Scholar

[21] E. Garrone, C. Otero Area´n, Variable temperature infrared spectroscopy: A convenient tool for studying the thermodynamics of weak solid–gas interactions, Chem. Soc. Rev. 34 (2005) 846-857.

DOI: 10.1039/b407049f

Google Scholar

[22] C.O. Area´n, D. Nachtigallova´, P. Nachtigall, E. Garrone, M. Rodrı´guez Delgado, Thermodynamics of reversible gas adsorption on alkali-metal exchanged zeolites—the interplay of infrared spectroscopy and theoretical calculations, PCCP 9 (2007).

DOI: 10.1039/b615535a

Google Scholar

[23] C.O. Area´n, O.V. Manoilova, A.A. Tsyganenko, G.T. Palomino, M.P. Mentruit, F. Geobaldo, E. Garrone, Thermodynamics of Hydrogen Bonding between CO and the Supercage Brønsted Acid Sites of the H-Y Zeolite − Studies from Variable Temperature IR Spectrometry, Eur. J. Inorg. Chem. 2001 (2001).

DOI: 10.1002/1099-0682(200107)2001:7<1739::aid-ejic1739>3.0.co;2-m

Google Scholar

[24] C.O. Area´n, O.V. Manoilova, B. Bonelli, M. Rodrı´guez Delgado, G. Turnes Palomino, E. Garrone, Thermodynamics of hydrogen adsorption on the zeolite Li-ZSM-5, Chem. Phys. Lett. 370 (2003) 631-635.

DOI: 10.1016/s0009-2614(03)00172-6

Google Scholar

[25] C.O. Area´n, M.R. Delgado, G.T. Palomino, M.T. Rubio, N.M. Tsyganenko, A.A. Tsyganenko, E. Garrone, Thermodynamic studies on hydrogen adsorption on the zeolites Na-ZSM-5 and K-ZSM-5, Microporous Mesoporous Materials 80 (2005) 247-252.

DOI: 10.1016/j.micromeso.2004.12.004

Google Scholar

[26] G.T. Palomino, M.R. Delgado, N.M. Tsyganenko, A.A. Tsyganenko, E. Garrone, B. Bonelli, O.V. Manoilova, C.O. Area´n, Variable temperature FTIR studies on the interaction between molecular hydrogen and alkali-metal-exchanged ZSM-5 zeolites, Stud. Surf. Sci. Catal. 158-A (2005).

DOI: 10.1016/s0167-2991(05)80422-7

Google Scholar

[27] C.O. Area´n, G.T. Palomino, M.R. Llop Carayol, Variable temperature FT-IR studies on hydrogen adsorption on the zeolite (Mg, Na)-Y, Appl. Surf. Sci. 253 (2007) 5701-5704.

DOI: 10.1016/j.apsusc.2006.12.050

Google Scholar

[28] M.S. Westwell, M.S. Searle, J. Klein, D.H. Williams, Successful Predictions of the Residual Motion of Weakly Associated Species as a Function of the Bonding between Them, J. Phys. Chem. 100 (1996) 16000-16001.

DOI: 10.1021/jp961361x

Google Scholar

[29] L. Liu, Q.X. Guo, Isokinetic Relationship, Isoequilibrium Relationship, and Enthalpy−Entropy Compensation, Chem. Rev. 101 (101) 673-696.

DOI: 10.1021/cr990416z

Google Scholar

[30] F.M. Goodman, Hydrogen bonding revisited: Geometric selection as a principal determinant of DNA replication fidelity, Proc. Natl. Acad. Sci. U. S. A. 94 (1997) 10493-10495.

DOI: 10.1073/pnas.94.20.10493

Google Scholar

[31] G. Sugihara, D.S. Shigematsu, S. Nagadome, S. Lee, Y. Sasaki, H. Igimi, Thermodynamic study on the Langmuir adsorption of various bile salts including taurine and glycine conjugates onto graphite in water, Langmuir 16 (2000) 1825-1833.

DOI: 10.1021/la990358c

Google Scholar

[32] X. Solans-Monfort, V. Branchadell, M. Sodupe, C.M. Zicovich- Wilson, E. Gribov, G. Spoto, C. Busco, P. Ugliengo, Can Cu+-Exchanged Zeolites Store Molecular Hydrogen? An Ab-Initio Periodic Study Compared with Low-Temperature FTIR, J. Phys. Chem. B 108 (2004).

DOI: 10.1002/chin.200437001

Google Scholar

[33] P. Nachtigall, E. Garrone, G. Turnes Palomino, M. Rodrı´guez Delgado, D. Nachtigallova´, C. Otero Area´n, FTIR spectroscopic and computational studies on hydrogen adsorption on the zeolite Li–FER, PCCP 8 (2006) 2286-2292.

DOI: 10.1039/b602362b

Google Scholar

[34] A.J. Ramı´rez-Cuesta, P.C.H. Mitchell, D.K. Ross, P.A. Georgiev, P.A. Anderson, H.W. Langmi, D. Book, Dihydrogen in cation-substituted zeolites X—an inelastic neutron scattering study, J. Mater. Chem. 17 (2007) 2533-2539.

DOI: 10.1039/b701167a

Google Scholar

[35] V.B. Kazansky, V.Y. Borovkov, H.G. Karge, Diffuse reflectance IR study of molecular hydrogen and deuterium adsorbed at 77 K on NaA zeolite, Part 1. —Fundamentals, combination and vibrational–rotational modes, Journal of the Chemical Society, Faraday Trans. 93 (1997).

DOI: 10.1039/a700079k

Google Scholar

[36] V.B. Kazansky, Drift spectra of adsorbed dihydrogen as a molecular probe for alkaline metal ions in faujasites, J. Mol. Catal. A: Chem. 141 (1999) 83-94.

DOI: 10.1016/s1381-1169(98)00252-0

Google Scholar

[37] F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A.C. Ferrari, R.S. Ruoff, V. Pellegrini, Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage, Science 347 (2015).

DOI: 10.1126/science.1246501

Google Scholar

[38] N. Texier-Mandoki, J. Dentzer, T. Piquero, S. Saadallah, P. David, C. Vix-Guterl, Carbon nanoparticles based nonlinear optical liquid, Carbon 42 (2004) 2735-2777.

DOI: 10.1016/j.carbon.2004.05.018

Google Scholar

[39] J.B. Parra, C.O. Ania, A. Arenillas, F. Rubiera, J.M. Palacios, J.J. Pis, Textural development and hydrogen adsorption of carbon materials from PET waste, J. Alloys Compd. 379 (2004) 280-289.

DOI: 10.1016/j.jallcom.2004.02.044

Google Scholar

[40] R. Zacharia, K.Y. Kim, S.W. Hwang, K.S. Nahm, Intrinsic linear scaling of hydrogen storage capacity of carbon nanotubes with the specific surface area, Catal. Today 120 (2007) 426-431.

DOI: 10.1016/j.cattod.2006.09.026

Google Scholar

[41] H. Jin, Y.S. Lee, I. Hong, Hydrogen adsorption characteristics of activated carbon, Catal. Today 120 (2007) 399-406.

DOI: 10.1016/j.cattod.2006.09.012

Google Scholar

[42] M. Jorda´-Beneyto, F. Sua´rez-Garcı´a, D. Lozano-Castello´, D. Cazorla-Amoro´s, A. Linares-Solano, Hydrogen storage on chemically activated carbons and carbon nanomaterials at high pressures, Carbon 45 (2007) 293-303.

DOI: 10.1016/j.carbon.2006.09.022

Google Scholar

[43] Y. Gogotsi, R.K. Dash, G. Yushin, T. Yildirim, G. Landisio, J. E. Fischer, Tailoring of Nanoscale Porosity in Carbide-Derived Carbons for Hydrogen Storage, J. Am. Chem. Soc. 127 (2005) 16006-16007.

DOI: 10.1021/ja0550529

Google Scholar

[44] M. Arai, S. Utsumi, M. Kanamaru, K. Urita, T. Fujimori, N. Yoshizawa, et al., Enhanced hydrogen adsorptivity of singlewall carbon nanotube bundles by one-step c60-pillaring method, Nano Letters 9 (2009).

DOI: 10.1021/nl9015733

Google Scholar

[45] M. Felderhoff, C. Weidenthaler, R. von Helmolt, U. Eberle, Hydrogen storage: the remaining scientific and technological challenges, PCCP 9 (2007) 2643-2653.

DOI: 10.1039/b701563c

Google Scholar

[46] R. Ströbel, J. Garche, P.T. Moseley, L. Jörisen, G. Wolf, Hydrogen storage by carbon materials, J. Power Sources 159 (2006) 781-801.

DOI: 10.1016/j.jpowsour.2006.03.047

Google Scholar

[47] B. Panella, M. Hirscher, S. Roth, Hydrogen adsorption in different carbon nanostructures, Carbon 43 (2005) 2209-2214.

DOI: 10.1016/j.carbon.2005.03.037

Google Scholar

[48] R. Dash, J. Chmiola, G. Yushin, Y. Gogotsi, G. Landisio, J. Singer, J. Fischer, S. Kucheyev, Titanium carbide derived nanoporous carbon for energy-related applications, Carbon 44 (2006) 2489-2479.

DOI: 10.1016/j.carbon.2006.04.035

Google Scholar

[49] C. Liu, Y. Chen, C-Z. Wu, S-T. Xu, H-M. Cheng, Hydrogen storage in carbon nanotubes revisited, Carbon 48 (2010).

Google Scholar

[50] P. Dibandjo, C. Zlotea, R. Gadiou, C.M. Ghimbeu, F. Cuevas, M. Latroche, E. Leroy, C. Vix-Guterl, Hydrogen storage in hybrid nanostructured carbon/palladium materials: Influence of particle size and surface chemistry, International Journal of Hydrogen Energy 38 (2013).

DOI: 10.1016/j.ijhydene.2012.10.050

Google Scholar

[51] C. -H. Chen, T. -Y. Chung, C. -C. Shen, M. -S. Yu, C. -S. Tsao, G. -N. Shi, C. -C. Huang, M. -D. Ger, W. -L. Lee, Hydrogen storage performance in palladium-doped graphene/carbon composites, Int. J. Hydrogen Energ. 38 (2013) 3681-3688.

DOI: 10.1016/j.ijhydene.2013.01.070

Google Scholar

[52] D. Silambarasan, V.J. Surya, V. Vasu, K. Iyakutti, One-step process of hydrogen storage in single walled carbon nanotubes-tin oxide nano composite, Int. J. Hydrogen Energ. 38 (2013) 4011-4016.

DOI: 10.1016/j.ijhydene.2013.01.129

Google Scholar

[53] M. Shiraishi, T. Takenobu, H. Kataura, M. Ata, Applied Physics A 78 (2004) 947-953; Z. Liu, Q. Xue, C. Ling, Z. Yan, J. Zheng, Hydrogen storage and release by bending carbon nanotubes, Comput. Mater. Sci. 68 (2013) 121-126.

DOI: 10.1016/j.commatsci.2012.09.025

Google Scholar

[54] B. Panella, M. Hirscher, B. Ludescher, Low-temperature thermal-desorption mass spectroscopy applied to investigate the hydrogen adsorption on porous materials, Micropor. Mesopor. Mat. 103 (2007) 230-234.

DOI: 10.1016/j.micromeso.2007.02.001

Google Scholar

[55] A.D. Lueking, R.T. Yang, N.M. Rodrı´guez, R.T.K. Baker, Hydrogen Storage in Graphite Nanofibers:  Effect of Synthesis Catalyst and Pretreatment Conditions, Langmuir 20 (2004) 714-721.

DOI: 10.1021/la0349875

Google Scholar

[56] M. Marella, M. Tomaselli, Synthesis of carbon nanofibers and measurements of hydrogen storage, Carbon 44 (2006) 1404-1413.

DOI: 10.1016/j.carbon.2005.11.020

Google Scholar

[57] R. Stro¨ bel, L. Jo¨ rissen, T. Schliermann, V. Trapp, W. Schu¨tz, K. Bohnhammel, G. Wolf, J. Garche, Hydrogen adsorption on carbon materials, J. Power Sources 84 (84) 221-224.

DOI: 10.1016/s0378-7753(99)00320-1

Google Scholar

[58] M. Armandi, B. Bonelli, F. Geobaldo, B. Onida, M. Ferroni, C. Otero Area´n, E. Garrone, Synthesis, morphological and raman spectroscopic characterization of partially graphitized ordered mesoporous carbons, Stud. Surf. Sci. Catal. 158 (2005).

DOI: 10.1016/s0167-2991(05)80379-9

Google Scholar

[59] B. Sakintuna, Y. Yürüm, Templated Porous Carbons:  A Review Article, Ind. Eng. Chem. Res. 44 (2005) 2893-2902.

DOI: 10.1021/ie049080w

Google Scholar

[60] B. Fang, H. Zhou, I. Honma, Ordered Porous Carbon with Tailored Pore Size for Electrochemical Hydrogen Storage Application, J. Phys. Chem. B 110 (2006) 4875-4880.

DOI: 10.1021/jp056063r

Google Scholar

[61] F.O.M. Gaslain, J. Parmentier, V.P. Valtchev, J. Patarin, First zeolite carbon replica with a well resolved X-ray diffraction pattern, Chem. Commun. (2006) 991-993.

DOI: 10.1039/b512002k

Google Scholar

[62] M. Armandi, B. Bonelli, I. Bottero, C. Otero Area´n, E. Garrone, Synthesis and characterization of ordered porous carbons with potential applications as hydrogen storage media, Micropor. Mesopor. Mat. 103 (2007) 150-157.

DOI: 10.1016/j.micromeso.2007.01.049

Google Scholar

[63] J.S. Lee, S. H. Joo, R. Ryoo, Synthesis of Mesoporous Silicas of Controlled Pore Wall Thickness and Their Replication to Ordered Nanoporous Carbons with Various Pore Diameters, J. Am. Chem. Soc. 124 (2002) 1156-1157.

DOI: 10.1021/ja012333h

Google Scholar

[64] A.B. Fuertes, S. Alvarez, Graphitic mesoporous carbons synthesised through mesostructured silica templates, Carbon 42 (2004) 3049-3055.

DOI: 10.1016/j.carbon.2004.06.020

Google Scholar

[65] A.B. Fuertes, T.A. Centeno, Mesoporous carbons with graphitic structures fabricated by using porous silica materials as templates and iron-impregnated polypyrrole as precursor, J. Mater. Chem. 15 (2005) 1079-1083.

DOI: 10.1039/b416007j

Google Scholar

[66] L. Chen, R.K. Singh, P. Webley, Synthesis, characterization and hydrogen storage properties of microporous carbons templated by cation exchanged forms of zeolite Y with propylene and butylene as carbon precursors, Micropor. Mesopor. Mat. 102 (2007).

DOI: 10.1016/j.micromeso.2006.12.033

Google Scholar

[67] Z. Yang, Y. Xia, R. Mokaya, Enhanced Hydrogen Storage Capacity of High Surface Area Zeolite-like Carbon Materials, J. Am. Chem. Soc. 129 (2007) 1673-1679.

DOI: 10.1021/ja067149g

Google Scholar

[68] G. Sun, J. Tangpanitanon, H. Shen, B. Wen, J. Xue, E. Wang, Limei Xu, Physisorption of molecular hydrogen on carbon nanotube with vacant defects, J. Chem. Phys. 140 (2014) 204712.

DOI: 10.1063/1.4879656

Google Scholar

[69] J.M. Juárez, M.B. Gómez Costa, O.A. Anunziata, Synthesis and characterization of Pt-CMK-3 hybrid nanocomposite for hydrogen storage, Int. J. Energy Res. 39 (2015) 128-139.

DOI: 10.1002/er.3229

Google Scholar

[70] Y. Liu, J. Zou, X. Zeng, W. Ding, Study on hydrogen storage properties of Mg–X (X = Fe, Co, V) nano-composites co- precipitated from solution, RSC Advances. 5 (2015) 7687-7696.

DOI: 10.1039/c4ra12977f

Google Scholar

[71] P. Javadian, D.A. Sheppard, C.E. Buckley, Torben R. Jensen, Hydrogen storage properties of nanoconfined libh4–Ca(BH4)2, Nano Energy 11 (2015) 96-103.

DOI: 10.1016/j.nanoen.2014.09.035

Google Scholar

[72] N. Karatepe, N. Yuca, B.F. Şenkal, Synthesis of Carbon-Based Nano Materials for Hydrogen Storage, Fullerenes, Nanotubes and Carbon Nanostructures 21 (2013) 31-46.

DOI: 10.1080/1536383x.2011.574323

Google Scholar

[73] S.J. Yang, T. Kim, J.H. Im,Y.S. Kim, K. Lee, H. Jung, et al., Mofderived hierarchically porous carbon with exceptional porosity and hydrogen storage capacity, Chem. Mater. 24 (2012).

DOI: 10.1021/cm202554j

Google Scholar

[74] J. L.C. Roswell, O.M. Yaghi, Metal–organic frameworks: a new class of porous materials, Micropo. Mesopor. Mat. 73 (2004).

Google Scholar

[75] B. Liu, H. Shioyama, T. Akita, Q. Xu, Metal-organic framework as a template for porous carbon synthesis, J. Am. Chem. Soc. 130 (2008).

DOI: 10.1021/ja7106146

Google Scholar

[76] M. Latroche, S. Surble´, C. Serre, C. Mellot-Draznieks, P. L. Llewellyn, J. H. Lee, J. S. Chang, S. H. Jhung, G. Fe´rey, Hydrogen Storage in the Giant-Pore Metal–Organic Frameworks MIL-100 and MIL-101, Angew. Chem. Int. Ed. 45 (2006) 8227-8231.

DOI: 10.1002/anie.200600105

Google Scholar

[77] H-L. Jiang, B. Liu, Y-Q. Lan, K. Kuratani, T. Akita, H. Shioyama, et al., From metal–organic framework to nanoporous carbon: Toward a very high surface area and hydrogen uptake, J. Am. Chem. Soc. 133 (2011).

DOI: 10.1021/ja203184k

Google Scholar

[78] K.S. Walton, R.Q. Snurr, Applicability of the BET Method for Determining Surface Areas of Microporous Metal−Organic Frameworks, J. Am. Chem. Soc. 129 (2007) 8552-8556.

DOI: 10.1021/ja071174k

Google Scholar

[79] X. Lin, J. Jia, X. Zhao, K.M. Thomas, A.J. Blake, G.S. Walker, N.R. Champness, P. Hubberstey, M. Schröder, High H2 Adsorption by Coordination-Framework Materials, Angew. Chem. Int. Ed. 45 (2006) 7358-7364.

DOI: 10.1002/anie.200601991

Google Scholar

[80] S. Ma, D. Sun, M.W. Ambrogio, J.A. Fillinger, S. Parkin, H.C. Zhou, Framework-Catenation Isomerism in Metal−Organic Frameworks and Its Impact on Hydrogen Uptake, J. Am. Chem. Soc. 129 (2007) 1858-1859.

DOI: 10.1021/ja067435s

Google Scholar

[81] G. Fe´rey, Microporous Solids:  From Organically Templated Inorganic Skeletons to Hybrid Frameworks.. Ecumenism in Chemistry, Chem. Mater. 13 (2001) 3084-3098.

DOI: 10.1021/cm011070n

Google Scholar

[82] J.L.C. Roswell, O.M. Yaghi, Strategies for Hydrogen Storage in Metal–Organic Frameworks, Angew. Chem. Int. Ed. 44 (2005) 4670-4679.

DOI: 10.1002/anie.200462786

Google Scholar

[83] D.H. Jung, D. Kim, T.B. Lee, S.B. Choi, J.H. Yoon, J. Kim, K. Choi, S.H. Choi, Grand Canonical Monte Carlo Simulation Study on the Catenation Effect on Hydrogen Adsorption onto the Interpenetrating Metal−Organic Frameworks, J. Phys. Chem. B 110 (2006).

DOI: 10.1021/jp065819z

Google Scholar

[84] D. Sun, S. Ma, Y. Ke, D.J. Collins, H.C. Zhou, An Interweaving MOF with High Hydrogen Uptake, J. Am. Chem. Soc. 128 (2006) 3896-3897.

DOI: 10.1021/ja058777l

Google Scholar

[85] C. Gao, S. Liu, L. Xie, Y. Ren, J. Cao, C. Sun, Design and construction of a microporous metal–organic framework based on the pillared-layer motif, CrystEngComm 9 (2007) 545-547.

DOI: 10.1039/b704433j

Google Scholar

[86] J. Y. Lee, L. Pan, S. P. Kelly, J. Jagiello, T. J. Emge, J. Li, Achieving High Density of Adsorbed Hydrogen in Microporous Metal Organic Frameworks, Adv. Mater. 17 (2005) 2703-2706.

DOI: 10.1002/adma.200500867

Google Scholar

[87] B. Panella, M. Hirscher, H. Pu¨tter, U. Mu¨ller, Hydrogen Adsorption in Metal–Organic Frameworks: Cu-MOFs and Zn-MOFs Compared, Adv. Funct. Mater. 16 (2006) 520-524.

DOI: 10.1002/adfm.200500561

Google Scholar

[88] J.L.C. Roswell, O.M. Yaghi, Effects of Functionalization, Catenation, and Variation of the Metal Oxide and Organic Linking Units on the Low-Pressure Hydrogen Adsorption Properties of Metal−Organic Frameworks, J. Am. Chem. Soc. 128 (2006).

DOI: 10.1021/ja056639q.s001

Google Scholar

[89] O.I. Lebedev, F. Millange, C. Serre, G. van Tendeloo, G. Fe´rey, First Direct Imaging of Giant Pores of the Metal−Organic Framework MIL-101, Chem. Mater. 17 (2005) 6525-6527.

DOI: 10.1021/cm051870o

Google Scholar

[90] D.J. Collins, H.C. Zhou, Hydrogen storage in metal–organic frameworks, J. Mater. Chem. 17 (2007) 3154-3160.

Google Scholar

[91] H. Furukawa, M.A. Miller, O.M. Yaghi, Independent verification of the saturation hydrogen uptake in MOF-177 and establishment of a benchmark for hydrogen adsorption in metal–organic frameworks, J. Mater. Chem. 17 (2007) 3197-3204.

DOI: 10.1039/b703608f

Google Scholar

[92] S. Bordiga, J.G. Vitillo, G. Ricchiardi, L. Regli, D. Cocina, A. Zecchina, B. Arstad, M. Bjørgen, J. Hafizovic, K. P. Lillerud, Interaction of Hydrogen with MOF-5, J. Phys. Chem. B 109 (2005) 18237-18242.

DOI: 10.1021/jp052611p

Google Scholar

[93] H. Frost, T. Du¨ren, R.Q. Snurr, Effects of Surface Area, Free Volume, and Heat of Adsorption on Hydrogen Uptake in Metal−Organic Frameworks, J. Phys. Chem. B 110 (2006) 9565-9570.

DOI: 10.1021/jp060433+

Google Scholar

[94] J.Y. Lee, J. Li, J. Jagiello, Gas sorption properties of microporous metal organic frameworks, J. Solid State Chem. 178 (2005) 2527-2532.

DOI: 10.1016/j.jssc.2005.07.002

Google Scholar

[95] Q. Yang, C. Zhong, Understanding Hydrogen Adsorption in Metal−Organic Frameworks with Open Metal Sites:  A Computational Study, J. Phys. Chem. B 110 (2006) 655-658.

DOI: 10.1021/jp055908w

Google Scholar

[96] O. Hu¨ bner, A. Glo¨ss, M. Fichtner, W. Klopper, On the Interaction of Dihydrogen with Aromatic Systems, J. Phys. Chem. A 108 (2004) 3019-3023.

DOI: 10.1021/jp031102p

Google Scholar

[97] B. Xiao, P.S. Wheatley, Z. Zhao, A.J. Fletcher, S. Fox, A.G. Rossi, I.L. Megson, S. Bordiga, L. Regli, K.M. Thomas, R.E. Morris, High-Capacity Hydrogen and Nitric Oxide Adsorption and Storage in a Metal−Organic Framework, J. Am. Chem. Soc. 129 (2007).

DOI: 10.1021/ja066098k

Google Scholar

[98] M. Dinca, J.R. Long, Strong H2 Binding and Selective Gas Adsorption within the Microporous Coordination Solid Mg3(O2C-C10H6-CO2)3, J. Am. Chem. Soc. 127 (2005) 9376-9377.

DOI: 10.1021/ja0523082.s001

Google Scholar

[99] M. Dinca, A.F. Yu, J.R. Long, Microporous Metal−Organic Frameworks Incorporating 1, 4-Benzeneditetrazolate:  Syntheses, Structures, and Hydrogen Storage Properties, J. Am. Chem. Soc. 128 (2006) 8904-8913.

DOI: 10.1021/ja068019a.s002

Google Scholar

[100] M. Dinca, A. Dailly, Y. Liu, C. M. Brown, D. A. Neumann, J.R. Long, Hydrogen Storage in a Microporous Metal−Organic Framework with Exposed Mn2+ Coordination Sites, J. Am. Chem. Soc. 128 (2006) 16876-16883.

DOI: 10.1021/ja0656853

Google Scholar

[101] X. Zhao, B. Xiao, A.J. Fletcher, K.M. Thomas, D. Bradshaw, M.J. Rosseinsky, Hysteretic adsorption and desorption of hydrogen by nanoporous metal-organic frameworks, Science 306 (2004) 1012-1015.

DOI: 10.1126/science.1101982

Google Scholar

[102] A.J. Fletcher, K.M. Thomas, M. Rosseinsky, Flexibility in metal-organic framework materials: Impact on sorption properties, J. Solid State Chem. 178 (2005) 2491-2510.

DOI: 10.1016/j.jssc.2005.05.019

Google Scholar

[103] B. Chen, S. Ma, F. Zapata, E.B. Lobkovsky, J. Yang, Hydrogen Adsorption in an Interpenetrated Dynamic Metal−Organic Framework, Inorg. Chem. 45 (2006) 5718-5720.

DOI: 10.1021/ic060437t

Google Scholar

[104] S. Kitagawa, R. Kitaura, S. Noro, Functional Porous Coordination Polymers, Angew. Chem. Int. Ed. 43 (2004) 2334-2375.

DOI: 10.1002/anie.200300610

Google Scholar

[105] Y. Yan, S. Yang, A.J. Blake, M. Schroder, Studies on Metal-Organic Frameworks of Cu(II) with Isophthalate Linkers for Hydrogen Storage, Acc. Chem. Res. 47(2) (2014) 296-307.

DOI: 10.1021/ar400049h

Google Scholar

[106] J. Goldsmith, A.G. Wong-Foy, M.J. Cafarella, D.J. Siegel, Theoretical Limits of Hydrogen Storage in Metal−Organic Frameworks: Opportunities and Trade-Offs, Chem. Mater. 25 (2013) 3373-3382.

DOI: 10.1021/cm401978e

Google Scholar

[107] F.J. Torres, B. Civalleri, C. Pisani, P. Ugliengo, An ab initio periodic study of acidic chabazite as a candidate for dihydrogen storage, J. Phys. Chem. B 110 (2006).

DOI: 10.1021/jp060843y

Google Scholar

[108] L. Regli, A. Zecchina, J. G. Vitillo, D. Cocina, G. Spoto, C. Lamberti, K.P. Lillerud, U. Olsbye, S. Bordiga, Hydrogen storage in Chabazite zeolite frameworks, PCCP 7 (2005).

DOI: 10.1002/chin.200548017

Google Scholar

[109] G. Turnes Palomino, M. R. Llop Carayol, C. Otero Area´n, Hydrogen adsorption on magnesium-exchanged zeolites, J. Mater. Chem. 16 (2006).

DOI: 10.1039/b607261e

Google Scholar

[110] P.A. Georgiev, A. Albinati, B.L. Mojet, J. Ollivier, J. Eckert, Observation of exceptionally strong binding of molecular hydrogen in a porous material: Formation of an η2-H2 complex in a Cu-exchanged ZSM-5 zeolite, J. Am. Chem. Soc. 129 (2007).

DOI: 10.1021/ja072240l

Google Scholar

[111] J.G. Vitillo, G. Ricchiardi, G. Spoto, A. Zecchina, Theoretical maximal storage of hydrogen in zeolitic frameworks, PCCP 7 (2005) 3948-3954.

DOI: 10.1039/b510989b

Google Scholar

[112] J.A.R. Navarro, E. Barea, J.M. Salas, N. Masciocchi, S. Galli, A. Sironi, C.O. Ania, J.B. Parra, H2, N2, CO, and CO2 Sorption Properties of a Series of Robust Sodalite-Type Microporous Coordination Polymers, Inorg. Chem. 45 (2006) 2397-2399.

DOI: 10.1021/ic060049r

Google Scholar

[113] H. Wu, W. Zhou, T. Yildirim, Hydrogen Storage in a Prototypical Zeolitic Imidazolate Framework-8, J. Am. Chem. Soc. 129 (2007) 5314-5315.

DOI: 10.1021/ja0691932

Google Scholar

[114] M. Dinca, W.S. Han, Y. Liu, A. Dailly, C.M. Brown, J.R. Long, Observation of Cu2+–H2 Interactions in a Fully Desolvated Sodalite-Type Metal–Organic Framework, Angew. Chem. Int. Ed. 46 (2007) 1419-1422.

DOI: 10.1002/anie.200604362

Google Scholar

[115] J. Jia, X. Lin, C. Wilson, A. J. Blake, N. R. Champness, P. Hubberstey, G. Walker, E. J. Cussen and M. Schro¨ der, Twelve-connected porous metal–organic frameworks with high H2 adsorption, Chem. Commun. (2007) 840-842.

DOI: 10.1039/b614254k

Google Scholar

[116] P.M. Foster, J. Eckert, B.D. Heiken, J.B. Parise, J.W. Yoon, S.H. Jhung, J.S. Chang, A.K. Cheetham, Adsorption of Molecular Hydrogen on Coordinatively Unsaturated Ni(II) Sites in a Nanoporous Hybrid Material, J. Am. Chem. Soc. 128 (2006).

DOI: 10.1021/ja0649217

Google Scholar

[117] S.H. Lim, J. Luo, W. Ji, J. Lin, Synthesis of boron nitride nanotubes and its hydrogen uptake, Catal. Today 120 (2007).

DOI: 10.1016/j.cattod.2006.09.016

Google Scholar

[118] G. Mpourmpakis, G.E. Froudakis, Why boron nitride nanotubes are preferable to carbon nanotubes for hydrogen storage?: An ab initio theoretical study, Catal. Today 120 (2007) 341-345.

DOI: 10.1016/j.cattod.2006.09.023

Google Scholar

[119] K.S. Deeg, J.J. Gutiérrez-Sevillano, R. Bueno-Pérez, J.B. Parra, C.O. Ania, M. Doblaré, S. Calero, Insights on the Molecular Mechanisms of Hydrogen Adsorption in Zeolites, J. Phys. Chem. C 117 (2013) 14374-14380.

DOI: 10.1021/jp4037233

Google Scholar

[120] J. Cai, L. Li, X. Lv, C. Yang, X. Zhao, Large Surface Area Ordered Porous Carbons via Nanocasting Zeolite 10X and High Performance for Hydrogen Storage Application, ACS Appl. Mater. Interfaces 6 (2014) 167-175.

DOI: 10.1021/am403810j

Google Scholar

[121] P.M. Budd, N.B. McKeown, D. Fritsch, Free volume and intrinsic microporosity in polymers, J. Mater. Chem. 15 (2005) 1977-(1986).

DOI: 10.1039/b417402j

Google Scholar

[122] N.B. McKewon, P.M. Budd, K.J. Msayib, B.S. Ghanem, H.J. Kingston, C.E. Tattershall, S. Makhseed, K.J. Reynolds, D. Fritsch, Polymers of Intrinsic Microporosity (PIMs): Bridging the Void between Microporous and Polymeric Materials, Chem. -Eur. J. 11 (2005).

DOI: 10.1002/chem.200400860

Google Scholar

[123] N.B. McKeown, B. Ganhem, K.J. Msayib, P.M. Budd, C.E. Tattershall, K. Mahmood, S. Tan, D. Book, H.W. Langmi, A. Walton, Towards Polymer-Based Hydrogen Storage Materials: Engineering Ultramicroporous Cavities within Polymers of Intrinsic Microporosity, Angew. Chem. Int. Ed. 45 (2006).

DOI: 10.1002/anie.200504241

Google Scholar

[124] J. Germain, J. Hradil, J. M. J. Fre´chet, F. Svec, High Surface Area Nanoporous Polymers for Reversible Hydrogen Storage, Chem. Mater. 18 (2006) 44304435.

DOI: 10.1021/cm061186p

Google Scholar

[125] P.M. Budd, A. Butler, J. Selbie, K. Mahmood, N.B. McKeown, B. Ghanem, K. Msayib, D. Book, A. Walton, The potential of organic polymer-based hydrogen storage materials, PCCP 9 (2007) 1802-1808.

DOI: 10.1039/b618053a

Google Scholar

[126] B.S. Ghanem, K.J. Msayib, N.B. McKeown, K.D.M. Harris, Z. Pan, P.M. Budd, A. Butler, J. Selbie, D. Book, A. Walton, A triptycene-based polymer of intrinsic microposity that displays enhanced surface area and hydrogen adsorption, Chem. Commun. (2007).

DOI: 10.1039/b614214a

Google Scholar

[127] J.Y. Lee, C.D. Wood, D. Bradshaw, M.J. Rosseinsky, A.I. Cooper, Hydrogen adsorption in microporous hypercrosslinked polymers, Chem. Commun. (2006) 2670-2672. DOI: 10. 1039/B604625H.

DOI: 10.1039/b604625h

Google Scholar

[128] G. Spoto, J.G. Vitillo, D. Cocina, A. Damin, F. Bonino, A. Zecchina, FTIR spectroscopy and thermodynamics of hydrogen adsorbed in a cross-linked polymer, PCCP 9 (2007) 4992-4999.

DOI: 10.1039/b704041e

Google Scholar

[129] R. Lu, Z. Meng, E. Kan, F. Li, D. Rao, Z. Lu, J. Qian, C. Xiao, H. Wu, K. Deng, Tunable band gap and hydrogen adsorption property of a two-dimensional porous polymer by nitrogen substitution, Phys. Chem. Chem. Phys. 15 (2013) 666-6670.

DOI: 10.1039/c2cp42832f

Google Scholar

[130] S. Yuan, D. White, A. Mason, D. -J. Liu, Porous organic polymers containing carborane for hydrogen storage, Int. J. Energy Res. 37 (2013) 732-740.

DOI: 10.1002/er.1886

Google Scholar

[131] N.F. Attia, S.M. Lee, H.J. Kim, K.E. Geckeler, Nanoporous polypyrrole: preparation and hydrogen storage properties, Int. J. Energy Res. 38 (2014) 466-476.

DOI: 10.1002/er.3095

Google Scholar

[132] Y. Xu, S. Jin, H. Xu, A. Nagai, D. Jiang, Conjugated microporous polymers: design, synthesis and application, Chem. Soc. Rev. 42 (2013) 8012-8031.

DOI: 10.1039/c3cs60160a

Google Scholar