A Short Review of Parabolic Trough Technology and the Case of Saudi Arabia

Article Preview

Abstract:

One of the most matured solar thermal technology commercially been used today is the solar parabolic trough power plants. With many challenges for solar photovoltaic technology to improve beyond its current efficiency levels, solar thermal technology is getting importance. A parabolic trough power plant works on an average temperature of about 400 °C. Although, there are some recent advances to increase the working temperature, power plants are not completely equipped in other parts of the system to handle such high temperatures. Hence, there is an imbalance in the achievements reached in different research areas of this technology. This article focus on this technology from its birth to current market competitions, including an overview of recent research advancements.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

65-72

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Mirunalini, S. Iniyan, G. Ranko, A review of solar thermal technologies, Renewable Sustainable Energy Rev. 14 (2010) 312-322.

Google Scholar

[2] S.A. Kalogirou, Solar thermal collectors and applications, Prog. Energy Combust. Sci. 30 (2004) 231-295.

Google Scholar

[3] J.T. Pytlinski, Solar energy installations for pumping irrigation water, Sol. Energy 21 (1978) 255-8.

Google Scholar

[4] W. Maier, A. Remshardt, Vorrichtung zur unmittelbaren Verwendung der Sonnenwa¨rme zur Dampferzeugung. Patent Nr. 231294, Kaiserliches Patentamt (1907).

Google Scholar

[5] A. Ferna´ ndez-Garcı´a , E. Zarza, L. Valenzuela, M. Pe´ rez, Parabolic-trough solar collectors and their applications, Renewable Sustainable Energy Rev. 14 (2010) 1695-1721.

DOI: 10.1016/j.rser.2010.03.012

Google Scholar

[6] W.W. Shaner, W.S. Duff, Solar thermal electric power systems: comparison of line-focus collectors, Sol. Energy 22 (1979) 13-49.

DOI: 10.1016/0038-092x(79)90059-8

Google Scholar

[7] H. Price, Advances in parabolic trough solar power technology, J. Sol. Energy Eng. 124 (2002) 109-125.

Google Scholar

[8] J. Pacheco, S. Showalter, W. Kolb, Development of a molten-salt thermocline thermal storage system for parabolic trough plants, Proc. of Solar Forum 2001, Solar Energy: The Power to Choose, April 21-25, Washington, DC.

DOI: 10.1115/sed2001-158

Google Scholar

[9] S.A. Kalogirou, S. Lloyd, J. Ward, P. Eleftheriou, Design and performance characteristics of a parabolic-trough solar-collector system, Appl. Energy 47 (1994) 341-354.

DOI: 10.1016/0306-2619(94)90041-8

Google Scholar

[10] V.E. Dudley, G.J. Kolb, A.R. Mahoney, Report No. SAND94-1884, SNL, Albuquerque, NM (1994).

Google Scholar

[11] G.S. Vicente, A. Morales, M.T. Gutie´rrez, Preparation and characterization of sol-gel TiO2 antireflective coatings for silicon, Thin Solid Films, 391 (2001) 133-137.

DOI: 10.1016/s0040-6090(01)00963-4

Google Scholar

[12] A. Morales, J.I. Ajona, Proc. of 9th Int. Symp. on Solar Thermal Concentrating Technologies, Font-Romeu, France, (1998).

Google Scholar

[13] C.E. Kennedy, Review of mid- to high-temperature solar selective absorber materials, NREL/TP-520-31267.

Google Scholar

[14] J. Barrigaa, U. Ruiz-de-Gopeguia, J. Goikoetxeaa, B. Cotoa, H. Cachafeirob, Selective coatings for new concepts of parabolic trough collectors, Energy Procedia 49 ( 2014 ) 30-39.

DOI: 10.1016/j.egypro.2014.03.004

Google Scholar

[15] Y.H. Lan, S. Brahma, Y.H. Tzeng, Jyh-Ming Ting, Platinum containing amorphous hydrogenated carbon (a-C: H/Pt) thinfilms as selective solar absorbers, Appl. Surf. Sci. 316 (2014) 398-404.

DOI: 10.1016/j.apsusc.2014.07.125

Google Scholar

[16] R. Blickensderfer, Solar Absorbers—Selective Surfaces, 2000 Marcel Dekker, Inc.

Google Scholar

[17] C.E. Kennedy,  Review of Mid- to High-Temperature Solar Selective Absorber Materials , NREL/TP-520-31267, (2002).

Google Scholar

[18] F. Cao, K. McEnaney, G. Chen, Z. Ren, A review of cermet-based spectrally selective solar absorbers, Energy Environ. Sci. 7 (2014) 1615.

DOI: 10.1039/c3ee43825b

Google Scholar

[19] Y. Tian, C.Y. Zhao, A review of solar collectors and thermal energy storage in solar thermal applications, Appl. Energy 104 (2013) 538-553.

DOI: 10.1016/j.apenergy.2012.11.051

Google Scholar

[20] C.Y. Zhao, Z.G. Wu, Thermal property characterization of a low melting temperature ternary nitrate salt mixture for thermal energy storage systems. Sol. Energy Mat. Sol. Cells 95 (2011) 3341-6.

DOI: 10.1016/j.solmat.2011.07.029

Google Scholar

[21] A. Gil, M. Medrano, I. Martorell, A. Lázaro, P. Dolado, B. Zalba, et al. State of the art on high temperature thermal energy storage for power generation. Part 1—concepts, materials and modellization. Renewable Sustainable Energy Rev. 14 (2010).

DOI: 10.1016/j.rser.2009.07.035

Google Scholar

[22] Pilkington, Solar International GmbH. Survey of thermal storage for parabolic trough power plants. NREL, Report, NREL/SR-550-27925, (2000).

DOI: 10.2172/765081

Google Scholar

[23] E. Hahne, Thermal energy storage some view on some problems. In: Proceedings of the 8th international heat transfer conference San Francisco, USA; (1986).

DOI: 10.1615/ihtc8.2490

Google Scholar

[24] K. Lovegrove, A solar driven ammonia based thermochemical energy storage system. In: Proceedings of ISES'99 solar world congress Jerusalem, Israel, (1999).

DOI: 10.1016/b978-008043895-5/50079-5

Google Scholar

[25] O. Mahian, A. Kianifar, A.S. Kalogirou, I. Pop, S. Wongwises, A review of the applications of nanofluids in solar energy, International Journal of Heat and Mass Transfer 57 (2013) 582-594.

DOI: 10.1016/j.ijheatmasstransfer.2012.10.037

Google Scholar

[26] Solutia, 1999, Therminol® VP-1 Heat Transfer Fluid, Technical Bulletin 7239115B, Solutia, St. Louis, MO, Available at:  ww. therminol. com.

Google Scholar

[27] R. Gee, R. Winston, 2001, A Non-Imaging Secondary Reflector for Parabolic Trough Concentrators, Report to NREL, Duke Solar Energy, Raleigh, NC.

Google Scholar

[28] S.M. Shaahid, I. El-Amin, Techno-economic evaluation of off-grid hybrid photovoltaic–diesel–battery power systems for rural electrification in Saudi Arabia—a way forward for sustainable development, Renewable Sustainable Energy Rev. 13 (2009).

DOI: 10.1016/j.rser.2007.11.017

Google Scholar

[29] S.H. Alawaji, Evaluation of solar energy research and its applications in Saudi Arabia—20 years of experience, Renewable Sustainable Energy Rev. 5 (2001) 59-77.

DOI: 10.1016/s1364-0321(00)00006-x

Google Scholar

[30] S. Rehman, M.A. Bader, S.A. Al-Moallem, Cost of solar energy generated using PV panels, Renewable Sustainable Energy Rev. 11 (2007) 1843-57.

DOI: 10.1016/j.rser.2006.03.005

Google Scholar

[31] H. Arif, Z. Alsuhaibani, A key review on present status and future directions of solar energy studies and applications in Saudi Arabia, Renewable Sustainable Energy Rev. 15 (2011) 5021- 5050.

DOI: 10.1016/j.rser.2011.07.052

Google Scholar

[32] Abengoa Solar. http: /www. abengoasolar. com; 2009. (Visited on 1st Feb, 2015).

Google Scholar