[1]
T. Mirunalini, S. Iniyan, G. Ranko, A review of solar thermal technologies, Renewable Sustainable Energy Rev. 14 (2010) 312-322.
Google Scholar
[2]
S.A. Kalogirou, Solar thermal collectors and applications, Prog. Energy Combust. Sci. 30 (2004) 231-295.
Google Scholar
[3]
J.T. Pytlinski, Solar energy installations for pumping irrigation water, Sol. Energy 21 (1978) 255-8.
Google Scholar
[4]
W. Maier, A. Remshardt, Vorrichtung zur unmittelbaren Verwendung der Sonnenwa¨rme zur Dampferzeugung. Patent Nr. 231294, Kaiserliches Patentamt (1907).
Google Scholar
[5]
A. Ferna´ ndez-Garcı´a , E. Zarza, L. Valenzuela, M. Pe´ rez, Parabolic-trough solar collectors and their applications, Renewable Sustainable Energy Rev. 14 (2010) 1695-1721.
DOI: 10.1016/j.rser.2010.03.012
Google Scholar
[6]
W.W. Shaner, W.S. Duff, Solar thermal electric power systems: comparison of line-focus collectors, Sol. Energy 22 (1979) 13-49.
DOI: 10.1016/0038-092x(79)90059-8
Google Scholar
[7]
H. Price, Advances in parabolic trough solar power technology, J. Sol. Energy Eng. 124 (2002) 109-125.
Google Scholar
[8]
J. Pacheco, S. Showalter, W. Kolb, Development of a molten-salt thermocline thermal storage system for parabolic trough plants, Proc. of Solar Forum 2001, Solar Energy: The Power to Choose, April 21-25, Washington, DC.
DOI: 10.1115/sed2001-158
Google Scholar
[9]
S.A. Kalogirou, S. Lloyd, J. Ward, P. Eleftheriou, Design and performance characteristics of a parabolic-trough solar-collector system, Appl. Energy 47 (1994) 341-354.
DOI: 10.1016/0306-2619(94)90041-8
Google Scholar
[10]
V.E. Dudley, G.J. Kolb, A.R. Mahoney, Report No. SAND94-1884, SNL, Albuquerque, NM (1994).
Google Scholar
[11]
G.S. Vicente, A. Morales, M.T. Gutie´rrez, Preparation and characterization of sol-gel TiO2 antireflective coatings for silicon, Thin Solid Films, 391 (2001) 133-137.
DOI: 10.1016/s0040-6090(01)00963-4
Google Scholar
[12]
A. Morales, J.I. Ajona, Proc. of 9th Int. Symp. on Solar Thermal Concentrating Technologies, Font-Romeu, France, (1998).
Google Scholar
[13]
C.E. Kennedy, Review of mid- to high-temperature solar selective absorber materials, NREL/TP-520-31267.
Google Scholar
[14]
J. Barrigaa, U. Ruiz-de-Gopeguia, J. Goikoetxeaa, B. Cotoa, H. Cachafeirob, Selective coatings for new concepts of parabolic trough collectors, Energy Procedia 49 ( 2014 ) 30-39.
DOI: 10.1016/j.egypro.2014.03.004
Google Scholar
[15]
Y.H. Lan, S. Brahma, Y.H. Tzeng, Jyh-Ming Ting, Platinum containing amorphous hydrogenated carbon (a-C: H/Pt) thinfilms as selective solar absorbers, Appl. Surf. Sci. 316 (2014) 398-404.
DOI: 10.1016/j.apsusc.2014.07.125
Google Scholar
[16]
R. Blickensderfer, Solar Absorbers—Selective Surfaces, 2000 Marcel Dekker, Inc.
Google Scholar
[17]
C.E. Kennedy, Review of Mid- to High-Temperature Solar Selective Absorber Materials , NREL/TP-520-31267, (2002).
Google Scholar
[18]
F. Cao, K. McEnaney, G. Chen, Z. Ren, A review of cermet-based spectrally selective solar absorbers, Energy Environ. Sci. 7 (2014) 1615.
DOI: 10.1039/c3ee43825b
Google Scholar
[19]
Y. Tian, C.Y. Zhao, A review of solar collectors and thermal energy storage in solar thermal applications, Appl. Energy 104 (2013) 538-553.
DOI: 10.1016/j.apenergy.2012.11.051
Google Scholar
[20]
C.Y. Zhao, Z.G. Wu, Thermal property characterization of a low melting temperature ternary nitrate salt mixture for thermal energy storage systems. Sol. Energy Mat. Sol. Cells 95 (2011) 3341-6.
DOI: 10.1016/j.solmat.2011.07.029
Google Scholar
[21]
A. Gil, M. Medrano, I. Martorell, A. Lázaro, P. Dolado, B. Zalba, et al. State of the art on high temperature thermal energy storage for power generation. Part 1—concepts, materials and modellization. Renewable Sustainable Energy Rev. 14 (2010).
DOI: 10.1016/j.rser.2009.07.035
Google Scholar
[22]
Pilkington, Solar International GmbH. Survey of thermal storage for parabolic trough power plants. NREL, Report, NREL/SR-550-27925, (2000).
DOI: 10.2172/765081
Google Scholar
[23]
E. Hahne, Thermal energy storage some view on some problems. In: Proceedings of the 8th international heat transfer conference San Francisco, USA; (1986).
DOI: 10.1615/ihtc8.2490
Google Scholar
[24]
K. Lovegrove, A solar driven ammonia based thermochemical energy storage system. In: Proceedings of ISES'99 solar world congress Jerusalem, Israel, (1999).
DOI: 10.1016/b978-008043895-5/50079-5
Google Scholar
[25]
O. Mahian, A. Kianifar, A.S. Kalogirou, I. Pop, S. Wongwises, A review of the applications of nanofluids in solar energy, International Journal of Heat and Mass Transfer 57 (2013) 582-594.
DOI: 10.1016/j.ijheatmasstransfer.2012.10.037
Google Scholar
[26]
Solutia, 1999, Therminol® VP-1 Heat Transfer Fluid, Technical Bulletin 7239115B, Solutia, St. Louis, MO, Available at: ww. therminol. com.
Google Scholar
[27]
R. Gee, R. Winston, 2001, A Non-Imaging Secondary Reflector for Parabolic Trough Concentrators, Report to NREL, Duke Solar Energy, Raleigh, NC.
Google Scholar
[28]
S.M. Shaahid, I. El-Amin, Techno-economic evaluation of off-grid hybrid photovoltaic–diesel–battery power systems for rural electrification in Saudi Arabia—a way forward for sustainable development, Renewable Sustainable Energy Rev. 13 (2009).
DOI: 10.1016/j.rser.2007.11.017
Google Scholar
[29]
S.H. Alawaji, Evaluation of solar energy research and its applications in Saudi Arabia—20 years of experience, Renewable Sustainable Energy Rev. 5 (2001) 59-77.
DOI: 10.1016/s1364-0321(00)00006-x
Google Scholar
[30]
S. Rehman, M.A. Bader, S.A. Al-Moallem, Cost of solar energy generated using PV panels, Renewable Sustainable Energy Rev. 11 (2007) 1843-57.
DOI: 10.1016/j.rser.2006.03.005
Google Scholar
[31]
H. Arif, Z. Alsuhaibani, A key review on present status and future directions of solar energy studies and applications in Saudi Arabia, Renewable Sustainable Energy Rev. 15 (2011) 5021- 5050.
DOI: 10.1016/j.rser.2011.07.052
Google Scholar
[32]
Abengoa Solar. http: /www. abengoasolar. com; 2009. (Visited on 1st Feb, 2015).
Google Scholar