Nanocrystalline Materials for Hybrid Photovoltaic Devices

Article Preview

Abstract:

Nanocomposites containing inorganic semiconductor nanomaterials are of tremendous interest for low-cost 3rd generation solar cells. A variety of possible materials and structures could be potentially used to reduce processing costs which is highly attractive for large scale production of solar cells. Controlling the morphology and surface chemistry of nanomaterials remains a key challenge that has major knock-on effects in devices. Herein, an attempt is made to highlight some of the challenges and the possible solutions for depositing high quality thin film composites for solar cell devices.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

45-50

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Tang, E.H. Sargent, Infrared Colloidal Quantum Dots for Photovoltaics: Fundamentals and Recent Progress, Adv. Mater. 23 (2011) 12-29.

DOI: 10.1002/adma.201001491

Google Scholar

[2] S. Ren, L.Y. Chang, S.K. Lim, J. Zhao, M. Smith, N. Zhao, V. Bulovic´, M. Bawendi, S. Gradečak, Inorganic–Organic Hybrid Solar Cell: Bridging Quantum Dots to Conjugated Polymer Nanowires, Nano Lett. 11 (2011) 3998-4402.

DOI: 10.1021/nl202435t

Google Scholar

[3] D. Yu, C. Wang, P. Guyot-Sionnest, n-Type Conducting CdSe Nanocrystal Solids, Science 300 (2003) 1277.

DOI: 10.1126/science.1084424

Google Scholar

[4] C.A. Leatherdale, C.R. Kagan, N. Y. Morgan, S.A. Empedocles, M.A. Kastner, M.G. Bawendi, Photoconductivity in CdSe quantum dot solids, Phys. Rev. B 62 (2000) 2669-2680.

DOI: 10.1103/physrevb.62.2669

Google Scholar

[5] M. Kuno, J.K. Lee, B.O. Dabbousi, V.F. Mikulec, M.G. Bawendi, The band edge luminescence of surface modified CdSe nanocrystallites: Probing the luminescing state, J. Chem. Phys. 106 (1997) 9869-9882.

DOI: 10.1063/1.473875

Google Scholar

[6] S.D. Oosterhout, M. M. Wienk, S.S. van Bavel, R. Thiedmann, L.J.A. Koster, J. Gilot, J. Loos, V. Schmidt, R.A. Janssen, The effect of three-dimensional morphology on the efficiency of hybrid polymer solar cells, Nat. Mater. 8 (2009) 818-824.

DOI: 10.1038/nmat2533

Google Scholar

[7] J. Seo, W.J. Kim, S.J. Kim, K.S. Lee, A.N. Cartwright, P.N. Prasad, Polymer nanocomposite photovoltaics utilizing CdSe nanocrystals capped with a thermally cleavable solubilizing ligand, Appl. Phys. Lett. 94 (2009) 133302.

DOI: 10.1063/1.3110969

Google Scholar

[8] S.A. Piryatinski, S. Ivanov, S. Tretiak, V. I, Klimov, Effect of Quantum and Dielectric Confinement on the Exciton−Exciton Interaction Energy in Type II Core/Shell Semiconductor Nanocrystals, Nano Lett. 7 (2007) 108-115.

DOI: 10.1021/nl0622404

Google Scholar

[9] J.N. Freitas, A.S. Gonçalves, A.F. Nogueira, A comprehensive review of the application of chalcogenide nanoparticles in polymer solar cells, Nanoscale, 6 (2014) 6371-6397.

DOI: 10.1039/c4nr00868e

Google Scholar

[10] T. Hanrath, D. Veldman, J.J. Choi, C.G. Christova, M.M. Wienk, R.A.J. Janssen, PbSe Nanocrystal Network Formation during Pyridine Ligand Displacement, ACS Appl. Mater. Interfaces 1(2) (2009) 244-250.

DOI: 10.1021/am8001583

Google Scholar

[11] E.J.D. Klem, H. Shukla, S. Hinds, D.D. MacNeil, L. Levina, E.H. Sargent, Impact of dithiol treatment and air annealing on the conductivity, mobility, and hole density in PbS colloidal quantum dot solids, Appl. Phys. Lett. 92 (2008) 212105.

DOI: 10.1063/1.2917800

Google Scholar

[12] J.M. Luther, M. Law, M.C. Beard, Q. Song, M.O. Reese, R.J. Ellingson, A.J. Nozik, Schottky Solar Cells Based on Colloidal Nanocrystal Films, Nano Lett. 8 (2008) 3488-3492.

DOI: 10.1021/nl802476m

Google Scholar

[13] G.I. Koleilat, L. Levina, H. Shukla, S.H. Myrskog, S. Hinds, A.G. Pattantyus-Abraham, E.H. Sargent, Efficient, Stable Infrared Photovoltaics Based on Solution-Cast Colloidal Quantum Dots, ACS Nano 2 (2008) 833-840.

DOI: 10.1021/nn800093v

Google Scholar

[14] J. Peet, J.Y. Kim, N.E. Coates, W.L. Ma, D. Moses, A.J. Heeger, G.C. Bazan, Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols, Nature Mater. 6 (2007) 497-500.

DOI: 10.1038/nmat1928

Google Scholar

[15] E.J.D. Klem, D.D. MacNeil, P.W. Cyr, L. Levina, E.H. Sargent, Efficient solution-processed infrared photovoltaic cells: Planarized all-inorganic bulk heterojunction devices via inter-quantum-dot bridging during growth from solution, Appl. Phys. Lett. 90 (2007).

DOI: 10.1063/1.2735674

Google Scholar

[16] J.M. Luther, M. Law, Q. Song, C.L. Perkins, M.C. Beard, A.J. Nozik, Structural, Optical, and Electrical Properties of Self-Assembled Films of PbSe Nanocrystals Treated with 1, 2-Ethanedithiol, ACS Nano 2 (2008) 271-280.

DOI: 10.1021/nn7003348

Google Scholar

[17] K.L. Leschkies, M.S. Kang, E.S. Aydil, D. Norris, Influence of Atmospheric Gases on the Electrical Properties of PbSe Quantum-Dot Films, J. Phys. Chem. C 114 (2010) 9988-9996.

DOI: 10.1021/jp101695s

Google Scholar

[18] Y. Liu, M. Gibbs, C.L. Perkins, J. Tolentino, M.H. Zarghami, J. Bustamante, L. Matt, Robust, Functional Nanocrystal Solids by Infilling with Atomic Layer Deposition, Nano Lett. 11 (2011) 5349-5355.

DOI: 10.1021/nl2028848

Google Scholar

[19] M. Law, M.C. Beard, S. Choi, J.M. Luther, M.C. Hanna, A.J. Nozik, Determining the Internal Quantum Efficiency of PbSe Nanocrystal Solar Cells with the Aid of an Optical Model, Nano Lett. 8 (2008).

DOI: 10.1021/nl802353x

Google Scholar

[20] S. Dowland, T. Lutz, A. Ward, S.P. King, A. Sudlow, M.S. Hill, K.C. Molloy, S.A. Haque, Direct Growth of Metal Sulfide Nanoparticle Networks in Solid-State Polymer Films for Hybrid Inorganic–Organic Solar Cells, Adv. Mater. 23 (2011) 2739-2744.

DOI: 10.1002/adma.201100625

Google Scholar

[21] H.C. Leventis, S.P. King, A. Sudlow, M.S. Hill, K.C. Molloy, S.A. Haque, Nanostructured Hybrid Polymer−Inorganic Solar Cell Active Layers Formed by Controllable in Situ Growth of Semiconducting Sulfide Networks, Nano Lett. 10 (2010) 1253-1258.

DOI: 10.1021/nl903787j

Google Scholar

[22] T. Lutz, A. MacLachlan, A. Sudlow, J. Nelson, M.S. Hill, K.C. Molloy, S.A. Haque, Thermal decomposition of solution processable metal xanthates on mesoporous titanium dioxide films: a new route to quantum-dot sensitised heterojunctions, Phys. Chem. Chem. Phys. 14 (2012).

DOI: 10.1039/c2cp43534a

Google Scholar

[23] F.T.F. O'Mahony, U.B. Cappel, N. Tokmoldin, T. Lutz, R. Lindblad, H. Rensmo, S.A. Haque, Low-Temperature Solution Processing of Mesoporous Metal–Sulfide Semiconductors as Light-Harvesting Photoanodes, Angew. Chem. Int. Ed. 52 (2013) 12047-12051.

DOI: 10.1002/anie.201305276

Google Scholar

[24] A.J. MacLachlan, F.T.F. O'Mahony, A.L. Ludlow, M.S. Hill, K.C. Molloy, J. Nelson, S. A. Haque, Solution-Processed Mesoscopic Bi2S3: Polymer Photoactive Layers, ChemPhysChem, 15 (2014) 1019-23.

DOI: 10.1002/cphc.201301103

Google Scholar

[25] V. Kaltenhauser, T. Rath, W. Haas, A. Torvisco, S.K. Müller, B. Friedel, B. Kunert, R. Saf, F. Hofer, G. Trimmel, Bismuth sulphide–polymer nanocomposites from a highly soluble bismuth xanthate precursor, J. Mater. Chem. C 1 (2013) 7825-7832.

DOI: 10.1039/c3tc31684j

Google Scholar

[26] Y.C. Choi, T.N. Mandal, W.S. Yang, Y.H. Lee, S.H. Im, J.H. NoH, S.I. Seok, Sb2Se3-sensitized inorganic-organic heterojunction solar cells fabricated using a single-source precursor, Angew. Chem. Int. Ed. 52 (2013) 1329-1332.

DOI: 10.1002/anie.201308331

Google Scholar

[27] A.K. Bansal, F. Antolini, M.T. Sajjid, L. Stroea, R. Mazzaro, S.G. Ramkumar, K. -J. Kass, S. Allard, U. Scherf, I.D.W. Samuel, Photophysical and structural characterisation of in situ formed quantum dots, Phys. Chem. Chem. Phys. 16 (2014).

DOI: 10.1039/c4cp00727a

Google Scholar

[28] T. Rath, V. Kaltenhauser, W. Haas, A. Reichmann, F. Hofer, G. Trimmel, Solution-processed small molecule/copper indium sulfide hybrid solar cells, Sol. Energy Mater. Sol. Cells 114 (2013) 38-42.

DOI: 10.1016/j.solmat.2013.02.024

Google Scholar

[29] C. Fradler, T. Rath, S. Dunst, I.L. -papst, F. Saf, B. Kunert, F. Hofer, R. Resel, G. Trimmel, Flexible polymer/copper indium sulfide hybrid solar cells and modules based on the metal xanthate route and low temperature, Sol. Energy Mater. Sol. Cells 124 (2014).

DOI: 10.1016/j.solmat.2014.01.043

Google Scholar