p.45
p.51
p.59
p.65
p.73
p.94
p.130
p.157
p.173
Water Desalination Using Solar Energy
Abstract:
Water desalination is receiving increasing attention due to water scarcity in many places in the world. Although two third of the earth is covered with water, most of this water is salty (97.5%) and therefore not suitable for human, animal or plant needs. Furthermore, most of the fresh water available throughout the work is not accessible such as icebergs and some deep ground water. Water uneven distribution throughout the world creates another problem of water scarcities in arid places. Africa and Middle East are having the smallest share of natural, pure water resources. Fortunately, these areas of arid climate and low fresh water are rich in the most significant renewable energy source, solar energy. In this chapter, the potential of the utilization of renewable energy sources is discussed. Several desalination techniques that can be powered by renewable energy are discussed. Those techniques include the non-conventional ones such as the solar stills, humidification dehumidification desalination and membrane distillation. What is common within all of these techniques is the relatively low temperatures needed to operate the plants (around 80 °C) that can be afforded easily using solar collectors for heating water (and sometimes air). Several layouts of humidification dehumidification systems and membrane distillation system are also discussed in details taking into consideration the improvement of performance due to energy recovery systems and the recent trends of such technologies. Although the solar energy is basically free source of energy, how good this energy is utilized in operating the desalination systems is considered in the gain output ratio (GOR) that allows for comparison of different systems comparison and shows the room for improvement.
Info:
Periodical:
Pages:
73-93
Citation:
Online since:
July 2015
Authors:
Price:
Сopyright:
© 2015 Trans Tech Publications Ltd. All Rights Reserved
Citation:
[1] M.A. Antar, S.M. Zubair, Performance evaluation of a solar still in the Eastern Province of Saudi Arabia—an improved analysis, Desalin. Water Treat. 22 (1-3) (2010) 100-110.
[2] J.A. Clark, The steady-state performance of a solar still, Sol. Energy 44(1) (1990) 43-49.
[3] E. Rubio, J.L. Fernández, M.A. Porta-Gándara, Modelling thermal asymmetries in double slope solar stills, Renewable Energy 29 (2004) 895-906.
[4] S.K. Shukla, A.K. Rai, Analytical thermal modelling of double slope solar still by using inner glass cover temperature, J. Therm. Sci. 12 (3) (2008) 139-152.
DOI: 10.2298/tsci0803139s
[5] S. Nijmeh, S. Odeh, B. Akash, Experimental and theoretical study of a single-basin solar still in Jordan, Int. Commun. Heat Mass Transfer 32 (2005) 565-572.
[6] A.I. Kudish, E.G. Evseev, G. Walter, T. Priebe, Simulation study on a solar desalination system utilizing an evaporator/condenser chamber, Energy Conversion Management 44 (10) (2003) 1653-1670.
[7] B.W. Tleimat, E.D. Howe, Nocturnal production of solar distiller, Sol. Energy 10(2) (1966) 61-66.
[8] Z.S. Abdel-Rehim, A. Lasheen, Experimental and theoretical study of a solar desalination system located in Cairo, Egypt, Desalination 217 (2007) 52-64.
[9] S. Kumar, G.N. Tiwari, Optimization of collector and basin areas for a higher yield active solar still, Desalination 116 (1998) 1-9.
[10] K. Voropoulos, E. Mathioulakis, V. Belessiotis, Experimental investigation of a solar still coupled with solar collectors, Desalination 138 (2001) 103-110.
[11] G.N. Tiwari, A. Kupfermann, S. Agrawal, A new design of double condensing chamber solar still, Desalination 114 (1997) 153-164.
[12] H. Tanaka, Y. Nakatake, A Simple and highly productive solar still: a vertical multiple effect diffusive type solar still coupled with a flat-plate mirror, Desalination 173 (2005) 287-300.
[13] A.A. Al-Karaghouli, W.E. Alnaser, Experimental comparative study of the performances of single and double basin solar stills, Appl. Energy 77(3) (2004) 317-325.
[14] A.A. Al-Karaghouli, W.E. Alnaser, Performances of single and double basin solar-stills. Appl. Energy 8(3) (2004) 347-354.
[15] T. Kiatsiriroat, S.C. Bhattacharya, P Wibulswas, Performance analysis of multiple effect vertical still with a flat plate solar collector, Solar & Wind Technology 4(4) (1989) 451-457.
[16] B. Ismail, Design and performance of a transportable hemispherical solar still, Renewable Energy (2008) 1-6.
[17] H. Tanaka, T. Nosoko, T. Nagata, A highly productive basin-type-multiple-effect coupled solar still, Desalination 130 (3) (2000) 279-293.
[18] M.I. Ahmed, M. Hrairi, A.F. Ismail, On the characteristics of multistage evacuated solar distillation, Renewable Energy 34 (6) (2009) 1471-1478.
[19] E. Delyannis, Historic background of desalination and renewable energies, Sol. Energy 75 (5) (2003) 357-366.
[20] H. Al-Hinai, M.S. Al-Nassri, B.A. Jubran, Parametric Investigation of a double-effect solar still in comparison with a single effect solar still, Desalination 150 (2002) 75-83.
[21] P.C. Lobo, S.R.D. Araujo, Design of a simple multi-effect basin type solar still, Proc. International Solar Energy Congress, New Delhi. V. 2026. 1977. .
[22] B.A. Jubran, M.I. Ahmed, A.F. Ismail, Y.A. Abakar, Numerical modelling of a multi-stage solar still, Energy Convers. Manage. 41(11) (2000) 1107-1121.
[23] S. Satcunanthan, H.P. Hansen, An investigation of some of the parameters involved in solar distillation, Sol. Energy 14 (3) (1973) 353-363.
[24] G.N. Tiwari, Demonstration plant of multi-wick solar still, Energy Convers. Manage. 24(4) (1984) 313-316.
[25] M.F.A. Goosen, S.S. Sablani, W.H. Shayya, C. Paton, H. Al-Hinai, Thermodynamic and economic considerations in solar desalination, Desalination 129 (2000) 63-89.
[26] V.A. Akinsete, C.U. Duru, A cheap method of improving the performance of roof type solar stills, Sol. Energy 23 (1979) 271-272.
[27] M.M. Naim, M.A. Abd El Kawi, Non-conventional solar stills, Part 1. Non-conventional solar stills with charcoal particles as absorber medium, Desalination 153 (2002) 55-64.
[28] M.M. Naim, M.A. Abd El Kawi, Non-conventional solar stills, Part 2. Non-conventional solar stills with energy storage element, Desalination 153 (2002) 71-80.
[29] M.I. Saravanan, K. Manikandan, Experimental analysis of Single Slope Stepped Solar Still with and without Latent Heat Thermal Energy Storage System (LHTESS), International Journal of Research in Environmental Science and Technology 2(4) (2012).
[30] S.G. Patel, S. Bhatnagar, J. Vardia, SC Ameta, Use of photocatalysts in solar desalination. Desalination 189 (2006) 287-291.
[31] M. Abu-Arabi, Y. Zurigat, H. Al-Hinai, S. Al-Hiddabi, Modeling and performance analysis of a solar desalination unit with double-glass cover cooling, Desalination 143 (2) (2002) 173-182.
[32] Z. Hongfei, G. Xinshi, Steady-state experimental study of a closed recycle solar still with enhanced falling film evaporation and regeneration, Renewable Energy 26 (2002) 295-308.
[33] M. Hammam, M.K. El-Mansy, S.M. El-Bashir, M.G. El-Shaarawy, Performance evaluation of thin-film solar concentrators for greenhouse applications, Desalination 209 (2007) 244-250.
[34] M.T. Chaibi, Analysis by simulation of a solar still integrated in a greenhouse roof, Desalination 128 (2000) 123-38.
[35] A.M. Radhwan, H.E.S. Fath, Thermal performance of greenhouses with a built-in solar distillation system: experimental study, Desalination 181 (2005) 193-205.
[36] E.G. Marı´, R.P.G. Colomer, C.A. Blaise-Ombrecht, Performance analysis of a solar still integrated in a greenhouse, Desalination 203 (2007) 435-443.
[37] H S Aybar, H Assefi, A review and comparison of solar distillation: Direct and indirect type systems, Desalin. Water Treat. 10 (2009) 321-331.
DOI: 10.5004/dwt.2009.931
[38] R. Tripathy, G.N. Tiwari, Effect of water depth on internal heat and mass transfer for active solar distillation, Desalination 173 (2005) 187-200.
[39] A.K. Tiwari, G.N. Tiwari, Effect of water depths on heat and mass transfer in a passive solar still: in summer climatic condition, Desalination 195 (2006) 78-94.
[40] V.B. Sharma, S.C. Mullick, Estimation of Heat Transfer Coefficients, the Upward Heat Flow, and Evaporation in a Solar Still, ASME J. Solar Energy Engineering 113 (1991) 36-41.
DOI: 10.1115/1.2929949
[41] V.B. Sharma, S.C. Mullick, Calculations of hourly input of a solar still, J. of Solar Energy Engineering 115 (1993) 231-236.
DOI: 10.1115/1.2930055
[42] P.I. Cooper, The maximum efficiency of single effect solar stills, Solar Energy 15 (1973) 205-217.
[43] M. Mimaki, K. Tanaka, K. Watanabe, The performance of solar stills, Energy Development in Japan 3(1981) 207-225.
[44] Y.P. Yadaf, Y.N. Prasad, Parametric investigation of a basing type solar still, Energy Convers. Manage. 31 (1991) 7-16.
[45] Y.P. Yadav, B.P. Yadav, Transient analytical solution of a solar still integrated with a tubular solar energy collector, Energy Convers. Manage. 39(9) (1998) 927-930.
[46] N. Hussain, A. Rahim, Utilization of new technique to improve the efficiency of horizontal solar desalination still, Desalination 128 (2001) 121-128.
[47] A. El-Bahi, D. Inan, A solar still with minimum inclination, coupling to an outside condenser, Desalination 123 (1999) 79-83.
[48] B. Bouchekima, B. Gros, R. Ouahes, M. Diboun, Brackish water desalination with heat recovery, Desalination 138 (2001) 147-55.
[49] M.K. Phadatare, S.K. Verma, Effect of cover materials on heat and mass ransfer coefficients in a plastic solar still, Desalin. Water Treat. 2 (2009) 248-253.
[50] A.N. Khalifa, A.M. Hamood, Experimental validation and enhancement of some solar still performance correlations, Desalin. Water Treat. 4 (2009) 311-315.
DOI: 10.5004/dwt.2009.482
[51] K.G.T. Hollands, T.E. Unny, G.D. Raithby and L. Konicek, Free convection heat transfer across inclined air layers, Transactions of ASME, J. Heat Transfer 98 (1976) 189-193.
DOI: 10.1115/1.3450517
[52] R.V. Dunkle, Solar water distillation, the roof type still and a multiple effect diffusion still, international developments in heat transfer ASME. In: Proceedings of international heat transfer part V. University of Colorado (1961) 895.
[53] W.H. McAdams, Heat Transmission, 3rd Edition, McGraw- Hill, New York (1954).
[54] J.H. Watmuff, W.W. Charters, D. Proctor, Solar and Wind Induced External Coefficients for Solar Collectors, COMPLES, 2(1977) 56.
[55] E.M.J. Sparrow, J.W. Ramsey, E.A. Mass, Effect of finite width on heat transfer and fluid flow about an inclined rectangular plate, Trans. ASME, J. Heat Transfer 101(2) (1979) 199-204.
DOI: 10.1115/1.3450946
[56] J.A. Duffie, W.A. Beckman, Solar Engineering of Thermal Processes, third edition, John Wiley and Sons, (2006).
[57] J.H. Lienhard, M.A. Antar, A. Bilton, J. Blanco, G. Zaragoza, Solar Desalination, Annual Review of Heat Transfer, Vol. 15. New York: Begell House, Inc., (2012).
[58] G.P. Narayan, M.H. Sharqawy, E.K. Summers, J.H. Lienhard, S.M. Zubair, M.A. Antar, The potential of solar-driven humidification-dehumidification desalination for small-scale decentralized water production, Renewable Sustainable Energy Rev. 14 (2010).
[59] E. Chafik, A new type of seawater desalination plants using solar energy, Desalin. Water Treat. 156 (2003) 333-348.
[60] E. Chafik, Design of plants for solar desalination using the multi-stage heating/humidifying technique. Desalin. Water Treat. 168 (2004) 55-71.
[61] M.A. Antar, M.H. Sharqawy, Experimental investigations on the performance of an air heated humidification–dehumidification desalination system, Desalin. Water Treat. 51 (4-6) (2013) 837-843.
[62] S. Al-Hallaj, M.M. Farid, A.R. Tamimi, Solar desalination with humidification-dehumidification cycle: performance of the unit. Desalin. Water Treat. 120 (1998) 273-280.
[63] M.M. Farid, S. Parekh, J.R. Selman, S Al-Hallaj, Solar desalination with humidification dehumidification cycle: mathematical modeling of the unit, Desalination 151 (2002) 153-164.
[64] J.F. Klausner, R. Mei, Y. Li, Innovative Fresh Water Production Process for Fossil Fuel Plants. 2003, U.S. DOE - Energy Information Administration annual report.
DOI: 10.2172/825857
[65] H.E.S. Fath, A. Ghazy, Solar desalination using humidification dehumidification technology, Desalination 142 (2002) 119-133.
[66] C. Yamali, I. Solmus, Theoretical investigation of a humidification dehumidification desalination system configured by a double-pass flat plate solar air heater, Desalination 205 (2007) 163-177.
[67] A.S. Nafey et al., Solar desalination using humidification–dehumidification processes-Part II. An experimental investigation, Energy Convers. Manage. 45(7-8) (2004) 1263-1277.
[68] G. Al-Enezi, H.M. Ettouney, N. Fawzi, Low temperature humidification dehumidification desalination process, Energy Convers. Manage. 47 (2006) 470-484.
[69] G.P. Narayan, M.H. Sharqawy, J.H. Lienhard, S.M. Zubair Thermodynamic Analysis of Humidification-dehumidification desalination cycles, Desalin. Water Treat. 16 (2010) 339-353.
[70] H. Muller-Holst, Solar thermal desalination using the multiple effect humidification (MEH) method, in: Solar Desalination for the 21st Century (2007) 215-225.
[71] K.H. Mistry, J.H. Lienhard, S.M. Zubair, Effect of entropy generation on the performance of humidification-dehumidification desalination cycles, Int. J. Therm. Sci. 49 (2010) 1837-1847.
[72] M.H. Sharqawy, M.A. Antar, S.M. Zubair, A.M. Elbashir, Optimum Thermal Design of Humidification Dehumidification Desalination Systems, Desalination 349 (15) (2014) 10-21.
[73] H. Ettouney, Design and analysis of humidification dehumidification desalination process, Desalination 183 (2005) 341-352.
[74] M. Gryta, Water Desalination by Membrane Distillation, Desalination, Trends and technology, www. intechopen. com.
[75] A.E. Khalifa, Water and Air Gap Membrane Distillation for Water Desalination – An Experimental Comparative Study, Sep. Purif. Technol. 141 (2014) 276-284.
[76] A.M. Alklaibi, N. Lior, Membrane-distillation desalination: status and potential, Desalination 171 (2) (2005) 111-131.
[77] M. Khayet, T. Mitsuura, Membrane Distillation, Principles and Applications, Elsevier, (2011).
[78] E. Curcio, E. Drioli, Membrane distillation and related operations – A review, Separation & Purification Reviews 34 (2005) 35-86.
[79] M. Khayet, Membranes and Theoretical modeling of membrane distillation: A review, Adv. Colloid Interface Sci. 141 (1-2) (2011) 56-88.
[80] C. Charcosset, A review of membrane processes and renewable energies for desalination, Desalination 245 (1-3) (2009) 214-231.
[81] A. Alkhudhiri, N. Darwish, N. Hilal, Membrane distillation: A comprehensive review, Desalination (287) (15) (2012) 2-18.
[82] F. Laganà, G. Barbieri, E. Drioli, Direct contact membrane distillation: modelling and concentration experiments, J. Membr. Sci. 166 (1) (2000) 1-11.
[83] M.S. El-Bourawi, Z. Zing, R. Ma, M. Khayet, A framework for better understanding membrane distillation separation process, J. Membr. Sci. 285 (1–2) (2006) 4-29.
[84] T.Y. Cath, V.D. Adams, A.E. Childress, Experimental study of desalination using direct contact membrane distillation: a new approach to flux enhancement, J. Membr. Sci. 228 (2004) 5-16.
[85] K. He, H.J. Hwang, M.W. Woo, I.S. Moon, Production of drinking water from saline water by Direct contact membrane distillation (DCMD), J. Ind. Eng. Chem. 17 (1) (2011) 41-48.
[86] U. Dehesa-Carrasco, C.A. Pérez-Rábago, C.A. Arancibia-Bulnes, Experimental evaluation andmodeling of internal temperatures in an air gap membrane distillation unit, Desalination 326 (2013) 47-54.
[87] E. Guillén-Burrieza, J. Blanco, G. Zaragoza, D. -C. Alarcón, P. Palenzuela, M. Ibarra, W. Gernjak, Experimental analysis of an air gap membrane distillation solar desalination pilot system, J. Membr. Sci. 379 (1-2) (2011) 386-396.
[88] A. Khalifa, D.U. Lawal, M.A. Antar, performance of air gap membrane distillation unit for water desalination, ASME 2014 International Mechanical Engineering Congress & Exposition IMECE, November 14-20, 2014, Montreal, Canada.
[89] F.A. Banat, J. Simandl, Desalination by membrane distillation: a parametric study, Sep. Sci. Technol. 33 (2) (1998) 201-226.
[90] S. Kimura, S. Nakao, Transport phenomena in membrane distillation, J. Membr. Sci. 33 (1987) 285-298.
[91] G.L. Liu, C. Zhu, C.S. Cheung, C.W. Leung, Theoretical and experimental studies on air gap membrane distillation, Heat Mass Transfer 34 (1998) 329-335.
[92] R.B. Bird, W E Stewart, E N Lightfoot, Transport Phenomena, 2nd edition, Wiley, 2002 New York.
[93] J.M.O.D. Zarate, A. Velazquez, L. Pena, J.I. Mengual, Influence of temperature polarization on separation by membrane distillation, Sep. Sci. Technol. 28 (1993) 1421.
[94] C. Zhu, G. Liu, Modeling of ultrasonic enhancement on membrane distillation, J. Membr. Sci. 176 (1) (2000) 31-41.
[95] S. Bonyadi, T.S. Chung, Flux enhancement in membrane distillation by fabrication of dual layer hydrophilic-hydrophobic hollow fiber membranes. J. Membr. Sci. 306 (1-2) (2007) 134-146.