Water Desalination Using Solar Energy

Article Preview

Abstract:

Water desalination is receiving increasing attention due to water scarcity in many places in the world. Although two third of the earth is covered with water, most of this water is salty (97.5%) and therefore not suitable for human, animal or plant needs. Furthermore, most of the fresh water available throughout the work is not accessible such as icebergs and some deep ground water. Water uneven distribution throughout the world creates another problem of water scarcities in arid places. Africa and Middle East are having the smallest share of natural, pure water resources. Fortunately, these areas of arid climate and low fresh water are rich in the most significant renewable energy source, solar energy. In this chapter, the potential of the utilization of renewable energy sources is discussed. Several desalination techniques that can be powered by renewable energy are discussed. Those techniques include the non-conventional ones such as the solar stills, humidification dehumidification desalination and membrane distillation. What is common within all of these techniques is the relatively low temperatures needed to operate the plants (around 80 °C) that can be afforded easily using solar collectors for heating water (and sometimes air). Several layouts of humidification dehumidification systems and membrane distillation system are also discussed in details taking into consideration the improvement of performance due to energy recovery systems and the recent trends of such technologies. Although the solar energy is basically free source of energy, how good this energy is utilized in operating the desalination systems is considered in the gain output ratio (GOR) that allows for comparison of different systems comparison and shows the room for improvement.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

73-93

Citation:

Online since:

July 2015

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.A. Antar, S.M. Zubair, Performance evaluation of a solar still in the Eastern Province of Saudi Arabia—an improved analysis, Desalin. Water Treat. 22 (1-3) (2010) 100-110.

DOI: 10.5004/dwt.2010.1618

Google Scholar

[2] J.A. Clark, The steady-state performance of a solar still, Sol. Energy 44(1) (1990) 43-49.

Google Scholar

[3] E. Rubio, J.L. Fernández, M.A. Porta-Gándara, Modelling thermal asymmetries in double slope solar stills, Renewable Energy 29 (2004) 895-906.

DOI: 10.1016/j.renene.2003.11.001

Google Scholar

[4] S.K. Shukla, A.K. Rai, Analytical thermal modelling of double slope solar still by using inner glass cover temperature, J. Therm. Sci. 12 (3) (2008) 139-152.

DOI: 10.2298/tsci0803139s

Google Scholar

[5] S. Nijmeh, S. Odeh, B. Akash, Experimental and theoretical study of a single-basin solar still in Jordan, Int. Commun. Heat Mass Transfer 32 (2005) 565-572.

DOI: 10.1016/j.icheatmasstransfer.2004.06.006

Google Scholar

[6] A.I. Kudish, E.G. Evseev, G. Walter, T. Priebe, Simulation study on a solar desalination system utilizing an evaporator/condenser chamber, Energy Conversion Management 44 (10) (2003) 1653-1670.

DOI: 10.1016/s0196-8904(02)00180-2

Google Scholar

[7] B.W. Tleimat, E.D. Howe, Nocturnal production of solar distiller, Sol. Energy 10(2) (1966) 61-66.

DOI: 10.1016/0038-092x(66)90037-5

Google Scholar

[8] Z.S. Abdel-Rehim, A. Lasheen, Experimental and theoretical study of a solar desalination system located in Cairo, Egypt, Desalination 217 (2007) 52-64.

DOI: 10.1016/j.desal.2007.01.012

Google Scholar

[9] S. Kumar, G.N. Tiwari, Optimization of collector and basin areas for a higher yield active solar still, Desalination 116 (1998) 1-9.

DOI: 10.1016/s0011-9164(98)00052-6

Google Scholar

[10] K. Voropoulos, E. Mathioulakis, V. Belessiotis, Experimental investigation of a solar still coupled with solar collectors, Desalination 138 (2001) 103-110.

DOI: 10.1016/s0011-9164(01)00251-x

Google Scholar

[11] G.N. Tiwari, A. Kupfermann, S. Agrawal, A new design of double condensing chamber solar still, Desalination 114 (1997) 153-164.

DOI: 10.1016/s0011-9164(98)00007-1

Google Scholar

[12] H. Tanaka, Y. Nakatake, A Simple and highly productive solar still: a vertical multiple effect diffusive type solar still coupled with a flat-plate mirror, Desalination 173 (2005) 287-300.

DOI: 10.1016/j.desal.2004.08.035

Google Scholar

[13] A.A. Al-Karaghouli, W.E. Alnaser, Experimental comparative study of the performances of single and double basin solar stills, Appl. Energy 77(3) (2004) 317-325.

DOI: 10.1016/s0306-2619(03)00124-7

Google Scholar

[14] A.A. Al-Karaghouli, W.E. Alnaser, Performances of single and double basin solar-stills. Appl. Energy 8(3) (2004) 347-354.

DOI: 10.1016/s0306-2619(03)00005-9

Google Scholar

[15] T. Kiatsiriroat, S.C. Bhattacharya, P Wibulswas, Performance analysis of multiple effect vertical still with a flat plate solar collector, Solar & Wind Technology 4(4) (1989) 451-457.

DOI: 10.1016/0741-983x(87)90021-x

Google Scholar

[16] B. Ismail, Design and performance of a transportable hemispherical solar still, Renewable Energy (2008) 1-6.

Google Scholar

[17] H. Tanaka, T. Nosoko, T. Nagata, A highly productive basin-type-multiple-effect coupled solar still, Desalination 130 (3) (2000) 279-293.

DOI: 10.1016/s0011-9164(00)00092-8

Google Scholar

[18] M.I. Ahmed, M. Hrairi, A.F. Ismail, On the characteristics of multistage evacuated solar distillation, Renewable Energy 34 (6) (2009) 1471-1478.

DOI: 10.1016/j.renene.2008.10.029

Google Scholar

[19] E. Delyannis, Historic background of desalination and renewable energies, Sol. Energy 75 (5) (2003) 357-366.

DOI: 10.1016/j.solener.2003.08.002

Google Scholar

[20] H. Al-Hinai, M.S. Al-Nassri, B.A. Jubran, Parametric Investigation of a double-effect solar still in comparison with a single effect solar still, Desalination 150 (2002) 75-83.

DOI: 10.1016/s0011-9164(02)00931-1

Google Scholar

[21] P.C. Lobo, S.R.D. Araujo, Design of a simple multi-effect basin type solar still, Proc. International Solar Energy Congress, New Delhi. V. 2026. 1977. ‏‏.

DOI: 10.1016/b978-1-4832-8407-1.50394-9

Google Scholar

[22] B.A. Jubran, M.I. Ahmed, A.F. Ismail, Y.A. Abakar, Numerical modelling of a multi-stage solar still, Energy Convers. Manage. 41(11) (2000) 1107-1121.

DOI: 10.1016/s0196-8904(99)00157-0

Google Scholar

[23] S. Satcunanthan, H.P. Hansen, An investigation of some of the parameters involved in solar distillation, Sol. Energy 14 (3) (1973) 353-363.

DOI: 10.1016/0038-092x(73)90102-3

Google Scholar

[24] G.N. Tiwari, Demonstration plant of multi-wick solar still, Energy Convers. Manage. 24(4) (1984) 313-316.

DOI: 10.1016/0196-8904(84)90011-6

Google Scholar

[25] M.F.A. Goosen, S.S. Sablani, W.H. Shayya, C. Paton, H. Al-Hinai, Thermodynamic and economic considerations in solar desalination, Desalination 129 (2000) 63-89.

DOI: 10.1016/s0011-9164(00)00052-7

Google Scholar

[26] V.A. Akinsete, C.U. Duru, A cheap method of improving the performance of roof type solar stills, Sol. Energy 23 (1979) 271-272.

DOI: 10.1016/0038-092x(79)90166-x

Google Scholar

[27] M.M. Naim, M.A. Abd El Kawi, Non-conventional solar stills, Part 1. Non-conventional solar stills with charcoal particles as absorber medium, Desalination 153 (2002) 55-64.

DOI: 10.1016/s0011-9164(02)01093-7

Google Scholar

[28] M.M. Naim, M.A. Abd El Kawi, Non-conventional solar stills, Part 2. Non-conventional solar stills with energy storage element, Desalination 153 (2002) 71-80.

DOI: 10.1016/s0011-9164(02)01095-0

Google Scholar

[29] M.I. Saravanan, K. Manikandan, Experimental analysis of Single Slope Stepped Solar Still with and without Latent Heat Thermal Energy Storage System (LHTESS), International Journal of Research in Environmental Science and Technology 2(4) (2012).

Google Scholar

[30] S.G. Patel, S. Bhatnagar, J. Vardia, SC Ameta, Use of photocatalysts in solar desalination. Desalination 189 (2006) 287-291.

DOI: 10.1016/j.desal.2005.07.010

Google Scholar

[31] M. Abu-Arabi, Y. Zurigat, H. Al-Hinai, S. Al-Hiddabi, Modeling and performance analysis of a solar desalination unit with double-glass cover cooling, Desalination 143 (2) (2002) 173-182.

DOI: 10.1016/s0011-9164(02)00238-2

Google Scholar

[32] Z. Hongfei, G. Xinshi, Steady-state experimental study of a closed recycle solar still with enhanced falling film evaporation and regeneration, Renewable Energy 26 (2002) 295-308.

DOI: 10.1016/s0960-1481(00)00208-1

Google Scholar

[33] M. Hammam, M.K. El-Mansy, S.M. El-Bashir, M.G. El-Shaarawy, Performance evaluation of thin-film solar concentrators for greenhouse applications, Desalination 209 (2007) 244-250.

DOI: 10.1016/j.desal.2007.04.034

Google Scholar

[34] M.T. Chaibi, Analysis by simulation of a solar still integrated in a greenhouse roof, Desalination 128 (2000) 123-38.

DOI: 10.1016/s0011-9164(00)00028-x

Google Scholar

[35] A.M. Radhwan, H.E.S. Fath, Thermal performance of greenhouses with a built-in solar distillation system: experimental study, Desalination 181 (2005) 193-205.

DOI: 10.1016/j.desal.2005.05.005

Google Scholar

[36] E.G. Marı´, R.P.G. Colomer, C.A. Blaise-Ombrecht, Performance analysis of a solar still integrated in a greenhouse, Desalination 203 (2007) 435-443.

DOI: 10.1016/j.desal.2006.04.020

Google Scholar

[37] H S Aybar, H Assefi, A review and comparison of solar distillation: Direct and indirect type systems, Desalin. Water Treat. 10 (2009) 321-331.

DOI: 10.5004/dwt.2009.931

Google Scholar

[38] R. Tripathy, G.N. Tiwari, Effect of water depth on internal heat and mass transfer for active solar distillation, Desalination 173 (2005) 187-200.

DOI: 10.1016/j.desal.2004.08.032

Google Scholar

[39] A.K. Tiwari, G.N. Tiwari, Effect of water depths on heat and mass transfer in a passive solar still: in summer climatic condition, Desalination 195 (2006) 78-94.

DOI: 10.1016/j.desal.2005.11.014

Google Scholar

[40] V.B. Sharma, S.C. Mullick, Estimation of Heat Transfer Coefficients, the Upward Heat Flow, and Evaporation in a Solar Still, ASME J. Solar Energy Engineering 113 (1991) 36-41.

DOI: 10.1115/1.2929949

Google Scholar

[41] V.B. Sharma, S.C. Mullick, Calculations of hourly input of a solar still, J. of Solar Energy Engineering 115 (1993) 231-236.

DOI: 10.1115/1.2930055

Google Scholar

[42] P.I. Cooper, The maximum efficiency of single effect solar stills, Solar Energy 15 (1973) 205-217.

DOI: 10.1016/0038-092x(73)90085-6

Google Scholar

[43] M. Mimaki, K. Tanaka, K. Watanabe, The performance of solar stills, Energy Development in Japan 3(1981) 207-225.

Google Scholar

[44] Y.P. Yadaf, Y.N. Prasad, Parametric investigation of a basing type solar still, Energy Convers. Manage. 31 (1991) 7-16.

Google Scholar

[45] Y.P. Yadav, B.P. Yadav, Transient analytical solution of a solar still integrated with a tubular solar energy collector, Energy Convers. Manage. 39(9) (1998) 927-930.

DOI: 10.1016/s0196-8904(97)10025-5

Google Scholar

[46] N. Hussain, A. Rahim, Utilization of new technique to improve the efficiency of horizontal solar desalination still, Desalination 128 (2001) 121-128.

DOI: 10.1016/s0011-9164(01)00253-3

Google Scholar

[47] A. El-Bahi, D. Inan, A solar still with minimum inclination, coupling to an outside condenser, Desalination 123 (1999) 79-83.

DOI: 10.1016/s0011-9164(99)00061-2

Google Scholar

[48] B. Bouchekima, B. Gros, R. Ouahes, M. Diboun, Brackish water desalination with heat recovery, Desalination 138 (2001) 147-55.

DOI: 10.1016/s0011-9164(01)00257-0

Google Scholar

[49] M.K. Phadatare, S.K. Verma, Effect of cover materials on heat and mass ransfer coefficients in a plastic solar still, Desalin. Water Treat. 2 (2009) 248-253.

Google Scholar

[50] A.N. Khalifa, A.M. Hamood, Experimental validation and enhancement of some solar still performance correlations, Desalin. Water Treat. 4 (2009) 311-315.

DOI: 10.5004/dwt.2009.482

Google Scholar

[51] K.G.T. Hollands, T.E. Unny, G.D. Raithby and L. Konicek, Free convection heat transfer across inclined air layers, Transactions of ASME, J. Heat Transfer 98 (1976) 189-193.

DOI: 10.1115/1.3450517

Google Scholar

[52] R.V. Dunkle, Solar water distillation, the roof type still and a multiple effect diffusion still, international developments in heat transfer ASME. In: Proceedings of international heat transfer part V. University of Colorado (1961) 895.

Google Scholar

[53] W.H. McAdams, Heat Transmission, 3rd Edition, McGraw- Hill, New York (1954).

Google Scholar

[54] J.H. Watmuff, W.W. Charters, D. Proctor, Solar and Wind Induced External Coefficients for Solar Collectors, COMPLES, 2(1977) 56.

Google Scholar

[55] E.M.J. Sparrow, J.W. Ramsey, E.A. Mass, Effect of finite width on heat transfer and fluid flow about an inclined rectangular plate, Trans. ASME, J. Heat Transfer 101(2) (1979) 199-204.

DOI: 10.1115/1.3450946

Google Scholar

[56] J.A. Duffie, W.A. Beckman, Solar Engineering of Thermal Processes, third edition, John Wiley and Sons, (2006).

Google Scholar

[57] J.H. Lienhard, M.A. Antar, A. Bilton, J. Blanco, G. Zaragoza, Solar Desalination, Annual Review of Heat Transfer, Vol. 15. New York: Begell House, Inc., (2012).

DOI: 10.1615/annualrevheattransfer.2012004659

Google Scholar

[58] G.P. Narayan, M.H. Sharqawy, E.K. Summers, J.H. Lienhard, S.M. Zubair, M.A. Antar, The potential of solar-driven humidification-dehumidification desalination for small-scale decentralized water production, Renewable Sustainable Energy Rev. 14 (2010).

DOI: 10.1016/j.rser.2009.11.014

Google Scholar

[59] E. Chafik, A new type of seawater desalination plants using solar energy, Desalin. Water Treat. 156 (2003) 333-348.

DOI: 10.1016/s0011-9164(03)00364-3

Google Scholar

[60] E. Chafik, Design of plants for solar desalination using the multi-stage heating/humidifying technique. Desalin. Water Treat. 168 (2004) 55-71.

DOI: 10.1016/j.desal.2004.06.169

Google Scholar

[61] M.A. Antar, M.H. Sharqawy, Experimental investigations on the performance of an air heated humidification–dehumidification desalination system, Desalin. Water Treat. 51 (4-6) (2013) 837-843.

DOI: 10.1080/19443994.2012.714598

Google Scholar

[62] S. Al-Hallaj, M.M. Farid, A.R. Tamimi, Solar desalination with humidification-dehumidification cycle: performance of the unit. Desalin. Water Treat. 120 (1998) 273-280.

DOI: 10.1016/s0011-9164(98)00224-0

Google Scholar

[63] M.M. Farid, S. Parekh, J.R. Selman, S Al-Hallaj, Solar desalination with humidification dehumidification cycle: mathematical modeling of the unit, Desalination 151 (2002) 153-164.

DOI: 10.1016/s0011-9164(02)00994-3

Google Scholar

[64] J.F. Klausner, R. Mei, Y. Li, Innovative Fresh Water Production Process for Fossil Fuel Plants. 2003, U.S. DOE - Energy Information Administration annual report.

DOI: 10.2172/825857

Google Scholar

[65] H.E.S. Fath, A. Ghazy, Solar desalination using humidification dehumidification technology, Desalination 142 (2002) 119-133.

DOI: 10.1016/s0011-9164(01)00431-3

Google Scholar

[66] C. Yamali, I. Solmus, Theoretical investigation of a humidification dehumidification desalination system configured by a double-pass flat plate solar air heater, Desalination 205 (2007) 163-177.

DOI: 10.1016/j.desal.2006.02.053

Google Scholar

[67] A.S. Nafey et al., Solar desalination using humidification–dehumidification processes-Part II. An experimental investigation, Energy Convers. Manage. 45(7-8) (2004) 1263-1277.

DOI: 10.1016/s0196-8904(03)00152-3

Google Scholar

[68] G. Al-Enezi, H.M. Ettouney, N. Fawzi, Low temperature humidification dehumidification desalination process, Energy Convers. Manage. 47 (2006) 470-484.

DOI: 10.1016/j.enconman.2005.04.010

Google Scholar

[69] G.P. Narayan, M.H. Sharqawy, J.H. Lienhard, S.M. Zubair Thermodynamic Analysis of Humidification-dehumidification desalination cycles, Desalin. Water Treat. 16 (2010) 339-353.

DOI: 10.5004/dwt.2010.1078

Google Scholar

[70] H. Muller-Holst, Solar thermal desalination using the multiple effect humidification (MEH) method, in: Solar Desalination for the 21st Century (2007) 215-225.

DOI: 10.1007/978-1-4020-5508-9_16

Google Scholar

[71] K.H. Mistry, J.H. Lienhard, S.M. Zubair, Effect of entropy generation on the performance of humidification-dehumidification desalination cycles, Int. J. Therm. Sci. 49 (2010) 1837-1847.

DOI: 10.1016/j.ijthermalsci.2010.05.002

Google Scholar

[72] M.H. Sharqawy, M.A. Antar, S.M. Zubair, A.M. Elbashir, Optimum Thermal Design of Humidification Dehumidification Desalination Systems, Desalination 349 (15) (2014) 10-21.

DOI: 10.1016/j.desal.2014.06.016

Google Scholar

[73] H. Ettouney, Design and analysis of humidification dehumidification desalination process, Desalination 183 (2005) 341-352.

DOI: 10.1016/j.desal.2005.03.039

Google Scholar

[74] M. Gryta, Water Desalination by Membrane Distillation, Desalination, Trends and technology, www. intechopen. com.

Google Scholar

[75] A.E. Khalifa, Water and Air Gap Membrane Distillation for Water Desalination – An Experimental Comparative Study, Sep. Purif. Technol. 141 (2014) 276-284.

DOI: 10.1016/j.seppur.2014.12.007

Google Scholar

[76] A.M. Alklaibi, N. Lior, Membrane-distillation desalination: status and potential, Desalination 171 (2) (2005) 111-131.

DOI: 10.1016/j.desal.2004.03.024

Google Scholar

[77] M. Khayet, T. Mitsuura, Membrane Distillation, Principles and Applications, Elsevier, (2011).

Google Scholar

[78] E. Curcio, E. Drioli, Membrane distillation and related operations – A review, Separation & Purification Reviews 34 (2005) 35-86.

DOI: 10.1081/spm-200054951

Google Scholar

[79] M. Khayet, Membranes and Theoretical modeling of membrane distillation: A review, Adv. Colloid Interface Sci. 141 (1-2) (2011) 56-88.

DOI: 10.1016/j.cis.2010.09.005

Google Scholar

[80] C. Charcosset, A review of membrane processes and renewable energies for desalination, Desalination 245 (1-3) (2009) 214-231.

DOI: 10.1016/j.desal.2008.06.020

Google Scholar

[81] A. Alkhudhiri, N. Darwish, N. Hilal, Membrane distillation: A comprehensive review, Desalination (287) (15) (2012) 2-18.

DOI: 10.1016/j.desal.2011.08.027

Google Scholar

[82] F. Laganà, G. Barbieri, E. Drioli, Direct contact membrane distillation: modelling and concentration experiments, J. Membr. Sci. 166 (1) (2000) 1-11.

DOI: 10.1016/s0376-7388(99)00234-3

Google Scholar

[83] M.S. El-Bourawi, Z. Zing, R. Ma, M. Khayet, A framework for better understanding membrane distillation separation process, J. Membr. Sci. 285 (1–2) (2006) 4-29.

DOI: 10.1016/j.memsci.2006.08.002

Google Scholar

[84] T.Y. Cath, V.D. Adams, A.E. Childress, Experimental study of desalination using direct contact membrane distillation: a new approach to flux enhancement, J. Membr. Sci. 228 (2004) 5-16.

DOI: 10.1016/j.memsci.2003.09.006

Google Scholar

[85] K. He, H.J. Hwang, M.W. Woo, I.S. Moon, Production of drinking water from saline water by Direct contact membrane distillation (DCMD), J. Ind. Eng. Chem. 17 (1) (2011) 41-48.

DOI: 10.1016/j.jiec.2010.10.007

Google Scholar

[86] U. Dehesa-Carrasco, C.A. Pérez-Rábago, C.A. Arancibia-Bulnes, Experimental evaluation andmodeling of internal temperatures in an air gap membrane distillation unit, Desalination 326 (2013) 47-54.

DOI: 10.1016/j.desal.2013.07.014

Google Scholar

[87] E. Guillén-Burrieza, J. Blanco, G. Zaragoza, D. -C. Alarcón, P. Palenzuela, M. Ibarra, W. Gernjak, Experimental analysis of an air gap membrane distillation solar desalination pilot system, J. Membr. Sci. 379 (1-2) (2011) 386-396.

DOI: 10.1016/j.memsci.2011.06.009

Google Scholar

[88] A. Khalifa, D.U. Lawal, M.A. Antar, performance of air gap membrane distillation unit for water desalination, ASME 2014 International Mechanical Engineering Congress & Exposition IMECE, November 14-20, 2014, Montreal, Canada.

DOI: 10.1115/imece2014-36031

Google Scholar

[89] F.A. Banat, J. Simandl, Desalination by membrane distillation: a parametric study, Sep. Sci. Technol. 33 (2) (1998) 201-226.

DOI: 10.1080/01496399808544764

Google Scholar

[90] S. Kimura, S. Nakao, Transport phenomena in membrane distillation, J. Membr. Sci. 33 (1987) 285-298.

Google Scholar

[91] G.L. Liu, C. Zhu, C.S. Cheung, C.W. Leung, Theoretical and experimental studies on air gap membrane distillation, Heat Mass Transfer 34 (1998) 329-335.

DOI: 10.1007/s002310050267

Google Scholar

[92] R.B. Bird, W E Stewart, E N Lightfoot, Transport Phenomena, 2nd edition, Wiley, 2002 New York.

Google Scholar

[93] J.M.O.D. Zarate, A. Velazquez, L. Pena, J.I. Mengual, Influence of temperature polarization on separation by membrane distillation, Sep. Sci. Technol. 28 (1993) 1421.

Google Scholar

[94] C. Zhu, G. Liu, Modeling of ultrasonic enhancement on membrane distillation, J. Membr. Sci. 176 (1) (2000) 31-41.

Google Scholar

[95] S. Bonyadi, T.S. Chung, Flux enhancement in membrane distillation by fabrication of dual layer hydrophilic-hydrophobic hollow fiber membranes. J. Membr. Sci. 306 (1-2) (2007) 134-146.

DOI: 10.1016/j.memsci.2007.08.034

Google Scholar