Photocatalytic H2 Production Using Semiconductor Nanomaterials via Water Splitting – An Overview

Article Preview

Abstract:

Heterogeneous semiconductor based photocatalytic hydrogen (H2) production by water splitting is one of the widely recognized promising sustainable technologies to deliver clean energy for future energy demands. The present review article mainly focus on the overview of principle of water splitting, different semiconductor nanomaterials used for photocatalytic water splitting in the presence of UV and solar light irradiation, role of sacrificial reagents, simultaneous degradation of pollutants and H2 production reaction, strategy for development of efficient photocatalyst for H2 production. Further the flaws associated with present photocatalytic system like recombination rate of electron–hole pairs, low visible-light response, use of hazardous irradiation sources and surface area of photocatalyst etc. has also been discussed. Recently the use of energy efficient light emitting diodes (LEDs) as an irradiation source for H2 production is highly attracted due to its unique characteristics. Recent literature on LED source based photocatalytic system for H2 production has also been summarized and highlighted. At last, the future prospects and challenges towards the designing of better photocatalytic system for H2 production have also been discussed. From the literature survey, it is concluded that construction of efficient photocatalytic system for simultaneous degradation of pollutants and H2 production under energy efficient irradiation source offer clean and simple system for solving the futuristic environmental concerns and energy crisis.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

130-156

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Borgarello, J. Kiwi, E. Pelizzetti, M. Visca, M. Gratzel, Photochemical cleavage of water by photocatalysis, Nature 289 (1981) 158-160.

DOI: 10.1038/289158a0

Google Scholar

[2] R.K. Karn, O.N. Srivastava, On the synthesis and photochemical studies of nanostructured TiO2 and TiO2 admixed VO2 photoelectrodes in regard to hydrogen production through photoelectrolysis, Int. J. Hydrogen Energy 24 (1999) 965-971.

DOI: 10.1016/s0360-3199(98)00135-9

Google Scholar

[3] S.S. Mao, X. Chen, Selected nanotechnologies for renewable energy applications, Int. J. Energy Res. 31 (2007) 619-636.

DOI: 10.1002/er.1283

Google Scholar

[4] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238 (1972) 37-38.

DOI: 10.1038/238037a0

Google Scholar

[5] Z. Zou, J. Ye, K. Sayama, H. Arakawa, Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst, Nature 414 (2001) 625-627.

DOI: 10.1038/414625a

Google Scholar

[6] R.D. Ambashta, M. Sillanpaa, Water purification using magnetic assistance: A review, J. Hazard. Mater. 180 (2010) 38-49.

Google Scholar

[7] J.M. Herrmann, Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants, Catal. Today 53 (1999) 115-129.

DOI: 10.1016/s0920-5861(99)00107-8

Google Scholar

[8] M.A. Fox, M. Dulay, Heterogeneous photocatalysis, Chem. Rev. 93 (1993) 341-357.

Google Scholar

[9] M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnmann, Environmental applications of semiconductor photocatalysis, Chem. Rev. 95 (1995) 69-96.

Google Scholar

[10] A. Mills, S.L. Hunte, An overview of semiconductor photocatalysis, J. Photochem. Photobiol A: Chem. 108 (1997) 1-35.

Google Scholar

[11] A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis, J. Photochem. Photobiol C: Photochem. Rev. 1 (2000) 1-21.

Google Scholar

[12] O.M. Alfano, D. Bahnemann, A. E. Cassano, R. Dillert, R. Goslich, Photocatalysis in water environments using artificial and solar light, Catal. Today 58 (2000) 199-230.

DOI: 10.1016/s0920-5861(00)00252-2

Google Scholar

[13] A.E. Cassano, O.M. Alfano, Reaction engineering of suspended solid heterogeneous photocatalytic reactors, Catal. Today 58 (2000) 167-197.

DOI: 10.1016/s0920-5861(00)00251-0

Google Scholar

[14] D.A. Tryk, A. Fujishima, K. Honda, Recent topics in photoelectrochemistry: achievements and future prospects, Electrochim. Acta. 45 (2000) 2363-2376.

DOI: 10.1016/s0013-4686(00)00337-6

Google Scholar

[15] C. Tanielian, Decatungstate photocatalysis, Coord. Chem. Rev. 178-180 (1998) 1165-1181.

DOI: 10.1016/s0010-8545(98)00160-x

Google Scholar

[16] J.O.M. Bockris, The origin of ideas on a hydrogen economy and its solution to the decay of the environment, Int. J. Hydrogen Energy 27 (2002) 731-740.

DOI: 10.1016/s0360-3199(01)00154-9

Google Scholar

[17] J.M. Ogden, In Testimony to the Committee on Science; US House of Representatives, Washington, (2003).

Google Scholar

[18] R.M. Navarro, M.A. Peca, J.L. G. Fierro, Hydrogen production reactions from carbon feedstocks: fossil fuels and biomass, Chem. Rev. 107 (2007) 3952-3991.

DOI: 10.1021/cr0501994

Google Scholar

[19] J.A. Armor, The multiple roles for catalysis in the production of H2, Appl. Catal. A: Gen. 176 (1999) 159-176.

Google Scholar

[20] J.M. Lehn, J.P. Sauvage, R. Ziessel. Photochemical water splitting: Continous generation of hydrogen and oxygen by irradiation of aqueous suspensions of metal loaded strontium titanate, Nouv. J. Chem. 4 (1980) 623-627.

Google Scholar

[21] S. Sato, J.M. White, Photocatalytic production of hydrogen from water and Texas Lignite by use of a platinized titania catalyst, Ind. Eng. Chem. Prod. Res. Dev. 19 (1980) 542-544.

DOI: 10.1021/i360076a012

Google Scholar

[22] K. Domen, S. Naito, M. Suma, T. Onishi, K. Tamaura, Photocatalytic decomposition of water vapour on an NiO-SrTiO3 catalyst, J. Chem. Soc. Chem. Commun. 12 (1980) 543-544.

DOI: 10.1039/c39800000543

Google Scholar

[23] K. Maeda, K. Teramura, K. Domen, Effect of post-calcination on photocatalytic activity of (Ga1−xZnx)(N1−xOx) solid solution for overall water splitting under visible light, J. Catal. 254 (2008) 198-204.

DOI: 10.1016/j.jcat.2007.12.009

Google Scholar

[24] A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev. 38 (2009) 253-278.

DOI: 10.1039/b800489g

Google Scholar

[25] J. Yoshimura, Y. Ebina, J. Kondo, K. Domen, A. Tanaka, Visible light-induced photocatalytic behavior of a layered perovskite-type rubidium lead niobate, RbPb2Nb3O10, J. Phys. Chem. 97 (1993) 1970-(1973).

DOI: 10.1021/j100111a039

Google Scholar

[26] Y.V. Pleskov, Y.Y. Gurevich, In Semiconductor Photoelectrochemistry, Edr. P. N. Bartlett, Plenum, New York, (1986).

Google Scholar

[27] T. Kawai, T. Sakata, Hydrogen evolution from water using solid carbon and light energy, Nature 282 (1979) 283-284.

DOI: 10.1038/282283a0

Google Scholar

[28] A. Kudo, K. Omori, H. Kato, A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties, J. Am. Chem. Soc. 121 (1999).

DOI: 10.1002/chin.200012027

Google Scholar

[29] H. Kato, K. Asakura, A. Kudo, Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure, J. Am. Chem. Soc. 125 (2003) 3082-3089.

DOI: 10.1021/ja027751g

Google Scholar

[30] H.G. Kim, D.W. Hwang, J. S. Lee, An undoped, single-phase oxide photocatalyst working under visible light, J. Am. Chem. Soc. 126 (2004) 8912-8913.

DOI: 10.1021/ja049676a

Google Scholar

[31] A.J. Nozik, Photoelectrochemistry: Applications to solar energy conversion, Annu. Rev. Phys. Chem. 29 (1978) 189-222.

DOI: 10.1146/annurev.pc.29.100178.001201

Google Scholar

[32] T. Kawai, T. Sakata, J. Chem. Soc. Chem. Commun. (1979) 1047-1048.

Google Scholar

[33] T. Kawai, T. Sakata, Conversion of carbohydrate into hydrogen fuel by a photocatalytic process, Nature 286 (1980) 474-476.

DOI: 10.1038/286474a0

Google Scholar

[34] T. Umebayashi, T. Yamaki, H. Itoh, K. Asai, Band gap narrowing of titanium dioxide by sulfur doping, Appl. Phys. Lett. 81 (2002) 454.

DOI: 10.1063/1.1493647

Google Scholar

[35] G.N. Schrauzer, T.D. Guth, Photocatalytic reactions. 1. Photolysis of water and photoreduction of nitrogen on titanium dioxide, J. Am. Chem. Soc. 99 (1977) 7189-7193.

DOI: 10.1021/ja00464a015

Google Scholar

[36] K. Yamaguti, S. Sato, Photolysis of water over metallized powdered titanium dioxide, J. Chem. Soc. Faraday Trans. 1. 81 (1985) 1237-1246.

DOI: 10.1039/f19858101237

Google Scholar

[37] S. Tabata, H. Nishida, Y. Masaki, K. Tabata, Stoichiometric photocatalytic decomposition of pure water in Pt/TiO2 aqueous suspension system, Catal. Lett. 34 (1995) 245-249.

DOI: 10.1007/bf00808339

Google Scholar

[38] S.C. Moon, H. Mametsuka, S. Tabata, E. Suzuki, Photocatalytic production of hydrogen from water using TiO2 and B/TiO2, Catal. Today 58 (2000) 125-132.

DOI: 10.1016/s0920-5861(00)00247-9

Google Scholar

[39] Y. Li, G. Lu, S. Li, Photocatalytic transformation of rhodamine B and its effect on hydrogen evolution over Pt/TiO2 in the presence of electron donors, J. Photochem. Photobiol A: Chem. 152 (2002) 219-228.

DOI: 10.1016/s1010-6030(02)00210-1

Google Scholar

[40] A. Galinska, J. Walendziewski, Photocatalytic water splitting over Pt-TiO2 in the presence of sacrificial reagents, Energy Fuel 19 (2005) 1143-1147.

DOI: 10.1021/ef0400619

Google Scholar

[41] T. Sreethawong, S. Yoshikawa, Comparative investigation on photocatalytic hydrogen evolution over Cu-, Pd-, and Au-loaded mesoporous TiO2 photocatalysts, Catal. Commun. 6 (2005) 661-668.

DOI: 10.1016/j.catcom.2005.06.004

Google Scholar

[42] M.A. Khan, S.I. Woo, O.B. Yang, Hydrothermally stabilized Fe (III) doped titania active under visible light for water splitting reaction, Int. J. Hydrogen Energy 33 (2008) 5345-5351.

DOI: 10.1016/j.ijhydene.2008.07.119

Google Scholar

[43] L.S. Yoong, F.K. Chong, B.K. Dutta, Development of copper-doped TiO2 photocatalyst for hydrogen production under visible light, Energy 34 (2009) 1652-1661.

DOI: 10.1016/j.energy.2009.07.024

Google Scholar

[44] M. Zalas, M. Laniecki, Photocatalytic hydrogen generation over lanthanides-doped titania, Sol. Energy Mater. Sol. Cells 89 (2005) 287-296.

DOI: 10.1016/j.solmat.2005.02.014

Google Scholar

[45] H. Yang, L. Guo, W. Yan, H. Liu, A novel composite photocatalyst for water splitting hydrogen production, J. Power sources. 159 (2006) 1305-1309.

DOI: 10.1016/j.jpowsour.2005.11.106

Google Scholar

[46] J.S. Jang, W. Li, S.H. Oh, J.S. Lee, Fabrication of CdS/TiO2 nano-bulk composite photocatalysts for hydrogen production from aqueous H2S solution under visible light, Chem. Phys. Lett. 425 (2006) 278-282.

DOI: 10.1016/j.cplett.2006.05.031

Google Scholar

[47] A.V. Korzhak, N. I. Ermokhina, A. L. Stroyuk, V. K. Bukhtiyarov, A. E. Raevskaya, V. I. Litvin, S. Y. Kuchmiy, V. G. Ilyin, P. A. Manorik, Photocatalytic hydrogen evolution over mesoporous TiO2/metal nanocomposites, J. Photochem. Photobiol A: Chem. 198 (2008).

DOI: 10.1016/j.jphotochem.2008.02.026

Google Scholar

[48] T. Miwa, S. Kaneco, H. Katsumata, T. Suzuki, K. Ohta, S.C. Verma, K. Sugihara, Photocatalytic hydrogen production from aqueous methanol solution with CuO/Al2O3/TiO2 nanocomposite, Int. J. Hydrogen Energy 35 (2010) 6554-6560.

DOI: 10.1016/j.ijhydene.2010.03.128

Google Scholar

[49] Q. Gu, J. Long, Y. Zhou, R. Yuan, H. Lin, X. Wang, Single-site tin-grafted anatase TiO2 for photocatalytic hydrogen production: Toward understanding the nature of interfacial molecular junctions formed in semiconducting composite photocatalysts, J. Catal. 289 (2012).

DOI: 10.1016/j.jcat.2012.01.018

Google Scholar

[50] H.S. Kim, D. Kim, B.S. Kwak, G.B. Han, M.H. Um, M. Kang, Synthesis of magnetically separable core@shell structured NiFe2O4@TiO2 nanomaterial and its use for photocatalytic hydrogen production by methanol/ water splitting, Chem. Eng. J. 243 (2014).

DOI: 10.1016/j.cej.2013.12.046

Google Scholar

[51] C.M. Wu, R. Peng, N.M. Dimitrijevic, T. Rajh, R.T. Koodali, Preparation of TiO2-SiO2 aperiodic mesoporous materials with controllable formation of tetrahedrally coordinated Ti4+ ions and their performance for photocatalytic hydrogen production, Int. J. Hydrogen Energy 39 (2014).

DOI: 10.1016/j.ijhydene.2013.10.079

Google Scholar

[52] H. Yu, Y. Zhao, C. Zhou, L. Shang, Y. Peng, Y. Cao, L.Z. Wu, C.H. Tunga, T.J. Zhang, Carbon quantum dots/TiO2 composites for efficient photocatalytic hydrogen evolution, J. Mater. Chem. A: Chem. 2 (2014) 3344-3351.

DOI: 10.1039/c3ta14108j

Google Scholar

[53] M. Kirch, J.M. Lehn, J. P. Sauvage, Hydrogen generation by visible light irradiation of aqueous solutions of metal complexes. an approach to the photochemical conversion and storage of solar energy, Helv. Chim. Acta. 62 (1979) 1345-1384.

DOI: 10.1002/hlca.19790620449

Google Scholar

[54] K. Kalyanasundaram, J. Kiwi, M. Gratzel, Hydrogen evolution from water by visible light, a homogeneous three component test system for redox catalysis, Helv. Chim. Acta. 61 (1978) 2720-2730.

DOI: 10.1002/hlca.19780610740

Google Scholar

[55] C.V. Krishnan, N. Sutin, Homogeneous catalysis of the photoreduction of water by visible light. 2. Mediation by a tris(2, 2'-bipyridine)ruthenium(II)-cobalt(II) bipyridine system, J. Am. Chem. Soc. 103 (1981) 2141-2142.

DOI: 10.1021/ja00398a066

Google Scholar

[56] M. Karnahl, E. Mej, N. Rockstroh, S. Tschierlei, S.P. Luo, K. Grabow, A. Kruth, V. Bruser, H. Junge, S. Lochbrunner, M. Beller, Photocatalytic hydrogen production with copper photosensitizer-titanium dioxide composites, ChemCatChem. 6 (2014).

DOI: 10.1002/cctc.201300459

Google Scholar

[57] Z. Zhang, M.F. Hossain, T. Takahashi, Photoelectrochemical water splitting on highly smooth and ordered TiO2 nanotube arrays for hydrogen generation, Int. J. Hydrogen Energy 35 (2010) 8528-8535.

DOI: 10.1016/j.ijhydene.2010.03.032

Google Scholar

[58] T. Sakata, K. Hashimoto, T. Hawai, Catalytic properties of ruthenium oxide on n-type semiconductors under illumination, J. Phys. Chem. 88 (1984) 5214-5221.

DOI: 10.1021/j150666a020

Google Scholar

[59] J.H. Park, S. Kim, A. J. Bard, Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting, Nano. Lett. 6 (2006) 24-28.

DOI: 10.1021/nl051807y

Google Scholar

[60] J. Yoon, E. Shim, S. Bae, H. Joo, Application of immobilized nanotubular TiO2 electrode for photocatalytic hydrogen evolution: Reduction of hexavalent chromium (Cr(VI) in water, J. Hazard. Mater. 161 (2009) 1069-1074.

DOI: 10.1016/j.jhazmat.2008.04.057

Google Scholar

[61] W. Nam, S. Oh, H. Joo, S. Sarp, J. Cho, B.W. Nam, J. Yoon, Preparation of anodized TiO2 photoanode for photoelectrochemical hydrogen production using natural seawater, Sol. Energy Mater. Sol. Cells 94 (2010) 1809-1815.

DOI: 10.1016/j.solmat.2010.05.051

Google Scholar

[62] J. Gong, Y. Lai, C. Lin, Electrochemically multi-anodized TiO2 nanotube arrays for enhancing hydrogen generation by photoelectrocatalytic water splitting, Electrochim Acta. 55 (2010) 4776-4782.

DOI: 10.1016/j.electacta.2010.03.055

Google Scholar

[63] V. Subramanian, E.E. Wolf, P.V. Kamat, Catalysis with TiO2/Gold Nanocomposites. Effect of metal particle size on the fermi level equilibration, J. Am. Chem. Soc. 126 (2004) 4943-4950.

DOI: 10.1021/ja0315199

Google Scholar

[64] L.X. Sang, Z.Y. Zhang, C.F. Ma, Photoelectrical and charge transfer properties of hydrogen evolving TiO2 nanotube arrays electrodes annealed in different gases, Int. J. Hydrogen Energy 36 (2011) 4732-4738.

DOI: 10.1016/j.ijhydene.2011.01.071

Google Scholar

[65] Y. Sun, G. Wang, K. Yan, TiO2 nanotubes for hydrogen generation by photocatalytic water splitting in a two-compartment photoelectrochemical cell, Int. J. Hydrogen Energy 36 (2011) 15502-15508.

DOI: 10.1016/j.ijhydene.2011.08.112

Google Scholar

[66] H. Wu, Z. Zhang, High photoelectrochemical water splitting performance on nitrogen doped double-wall TiO2 nanotube array electrodes, Int. J. Hydrogen Energy 36 (2011) 13481-13487.

DOI: 10.1016/j.ijhydene.2011.08.014

Google Scholar

[67] L.X. Sang, Z. Zhi-yu, B. Guang-mei, D. Chun-xu, D. Chong-fang, A photoelectrochemical investigation of the hydrogen evolving doped TiO2 nanotube arrays electrode, Int. J. Hydrogen Energy 37 (2012) 854-859.

DOI: 10.1016/j.ijhydene.2011.04.040

Google Scholar

[68] Y. Lai, J. Gong, C. Lin, Self-organized TiO2 nanotube arrays with uniform platinum nanoparticles for highly efficient water splitting, Int. J. Hydrogen Energy 37 (2012) 6438-6446.

DOI: 10.1016/j.ijhydene.2012.01.078

Google Scholar

[69] J. Gong, W. Pu, C. Yang, J. Zhang, Novel one-step preparation of tungsten loaded TiO2 nanotube arrays with enhanced photoelectrocatalytic activity for pollutant degradation and hydrogen production, Catal. Commun. 36 (2013) 89-93.

DOI: 10.1016/j.catcom.2013.03.009

Google Scholar

[70] K.R. Reyes-Gil, D.B. Robinson, WO3-enhanced TiO2 nanotube photoanodes for solar water splitting with simultaneous wastewater treatment, ACS Appl. Mater. Interfaces 5 (2013) 12400-12410.

DOI: 10.1021/am403369p

Google Scholar

[71] H. Wang, W. Zhu, B. Chong, K. Qin, Improvement of photocatalytic hydrogen generation from CdSe/CdS/TiO2 nanotube-array coaxial heterogeneous structure, Int. J. Hydrogen Energy 39 (2014) 90-99.

DOI: 10.1016/j.ijhydene.2013.10.048

Google Scholar

[72] J. Bai, J. Li, Y. Liu, B. Zhou, W. Cai, A new glass substrate photoelectrocatalytic electrode for efficient visible-light hydrogen production: CdS sensitized TiO2 nanotube arrays, App. Catal. B: Environ. 95 (2010) 408-413.

DOI: 10.1016/j.apcatb.2010.01.020

Google Scholar

[73] J. Gong, C. Lin, M. Ye, Y. Lai, Enhanced photoelectrochemical activities of a nanocomposite film with a bamboo leaf-like structured TiO2 layer on TiO2 nanotube arrays, Chem. Commun. 47 (2011) 2598-2600.

DOI: 10.1039/c0cc04407e

Google Scholar

[74] Y. Li, H. Yu, W. Song, G. Li, B. Yi, Z. Shao, A novel photoelectrochemical cell with self-organized TiO2 nanotubes as photoanodes for hydrogen generation, Int. J. Hydrogen Energy 36 (2011) 14374-14380.

DOI: 10.1016/j.ijhydene.2011.08.026

Google Scholar

[75] C.H. Hung, C.L. Kao, K.R. Wu, Surface characteristics and photoelectrocatalytic capabilities of nanoporous titanium dioxide/tin indium oxide composite thin film electrodes, Electrochim Acta. 86 (2012) 3-9.

DOI: 10.1016/j.electacta.2012.05.133

Google Scholar

[76] M. Ye, J. Gong, Y. Lai, C. Lin, Z. Lin, High-efficiency photoelectrocatalytic hydrogen generation enabled by palladium quantum dots-sensitized TiO2 nanotube arrays, J. Am. Chem. Soc. 134 (2012) 15720-15723.

DOI: 10.1021/ja307449z

Google Scholar

[77] H. Park, A. Bak, Y.Y. Ahn, J. Choi, M.R. Hoffmannn, Photoelectrochemical performance of multi-layered BiOx–TiO2/Ti electrodes for degradation of phenol and production of molecular hydrogen in water, J. Hazard. Mater. 211-212 (2012) 47-54.

DOI: 10.1016/j.jhazmat.2011.05.009

Google Scholar

[78] Y. Liu, Y.X. Yu, W.D. Zhang, MoS2/CdS heterojunction with high photoelectrochemical activity for H2 evolution under visible light: the role of MoS2, J. Phys. Chem. C 117 (2013) 12949-12957.

DOI: 10.1021/jp4009652

Google Scholar

[79] X. Zhan, Q. Wang, F. Wang, Y. Wang, Z. Wang, J. Cao, M. Safdar, J. He, Composition-tuned ZnO/ZnxCd1−xTe core/shell nanowires array with broad spectral absorption from UV to NIR for hydrogen generation, ACS Appl. Mater. Interfaces 6 (2014).

DOI: 10.1021/am4054332

Google Scholar

[80] M.D. Hernandez-Alonso, F. Fresno, S. Suarez, J.M. Coronado, Development of alternative photocatalysts to TiO2: Challenges and opportunities, Energy Environ. Sci. 2 (2009) 1231-1257.

DOI: 10.1039/b907933e

Google Scholar

[81] F. Xu, P. Zhang, A. Navrotsky, Z.Y. Yuan, T.Z. Ren, M. Halasa, B.L. Su, Hierarchically assembled porous ZnO nanoparticles: synthesis, surface Energy, and photocatalytic Activity, Chem. Mater. 19 (2007) 5680-5686.

DOI: 10.1021/cm071190g

Google Scholar

[82] F. Zhao, X. Li, J.G. Zheng, X. Yang, F. Zhao, K. Wong, W. Sing, L. Jing, W. Wenjiao, S. Mingmei, Q. Qiang, ZnO pine-nanotree arrays grown from facile metal chemical corrosion and oxidation, Chem. Mater. 20 (2008) 1197-1199.

DOI: 10.1021/cm702598r

Google Scholar

[83] N. Bao, L. Shen, T. Takata, K. Domen, Self-templated synthesis of nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible light, Chem. Mater. 20 (2008) 110-117.

DOI: 10.1021/cm7029344

Google Scholar

[84] D. Jing, L. Guo, A novel method for the preparation of a highly stable and active CdS photocatalyst with a special surface nanostructure, J. Phys. Chem. B 110 (2006) 11139-11145.

DOI: 10.1021/jp060905k

Google Scholar

[85] Y. Li, Y. Huang, J. Wu, M. Huang, J. Lin, Photocatalytic activities for hydrogen evolution of new layered compound series HLaTax/3Nb2-x/3O7/Pt (x = 0, 2, 3, 4, and 6), J. Hazard. Mater. 177 (2010) 458-464.

DOI: 10.1016/j.jhazmat.2009.12.055

Google Scholar

[86] Y. Okamoto, S. Ida, J. Hyodo, H. Hagiwara, T. Ishihara, Synthesis and photocatalytic activity of rhodium-doped calcium niobate nanosheets for hydrogen production from a water/methanol system without cocatalyst loading, J. Am. Chem. Soc. 133 (2011).

DOI: 10.1021/ja207103j

Google Scholar

[87] J.H. Pan, W. I. Lee, Preparation of highly ordered cubic mesoporous WO3/TiO2 films and their photocatalytic properties, Chem. Mater. 18 (2006) 847-853.

DOI: 10.1021/cm0522782

Google Scholar

[88] L. Xu, J. Guan, L. Gao, Z. Sun, Preparation of heterostructured mesoporous In2O3/Ta2O5 nanocomposites with enhanced photocatalytic activity for hydrogen evolution, Catal. Commun. 12 (2011) 548-552.

DOI: 10.1016/j.catcom.2010.11.027

Google Scholar

[89] J. Zhang, G. Zhang, X. Chen, S. Lin, L. Mçhlmann, G. Dolega, G. Lipner, M. Antonietti, S. Blechert, X. Wang, Co-monomer control of carbon nitride semiconductors to optimize hydrogen evolution with visible light, Angew. Chem. Int. Ed. 51 (2012).

DOI: 10.1002/anie.201106656

Google Scholar

[90] X. Wang, Q. Xu, M. Li, S. Shen, X. Wang, Y. Wang, Z. Feng, J. Shi, H. Han, C. Li, Photocatalytic overall water splitting promoted by an a-b phase junction on Ga2O3, Angew. Chem. Int. Ed. 51 (2012) 13089-13092.

DOI: 10.1002/anie.201207554

Google Scholar

[91] M. Liu, Y. Du, L. Ma, D. Jing, L. Guo, Manganese doped cadmium sulphide nanocrystal for hydrogen production from water under visible light, Int. J. Hydrogen Energy 37 (2012) 730-736.

DOI: 10.1016/j.ijhydene.2011.04.111

Google Scholar

[92] M. Kimi, L. Yuliati, M. Shamsuddin, Preparation of Cu-doped Cd0. 1Zn0. 9S solid solution by hydrothermal method and its enhanced activity for hydrogen production under visible light irradiation, J. Photochem. Photobiol. A: Chem. 230 (2012) 15-22.

DOI: 10.1016/j.jphotochem.2012.01.004

Google Scholar

[93] E. Garskaite, G.T. Pan, T.C.K. Yang, S.T. Huang, A. Kareiva, A. The study of preparation and photoelectrical properties of chemical bath deposited Zn, Sb and Ni-doped CuInS2 films for hydrogen production, Solar Energy 86 (2012) 2584-2591.

DOI: 10.1016/j.solener.2012.05.031

Google Scholar

[94] X. Liu, P. Zeng, T. Peng, X. Zhang, K. Deng, Preparation of multiwalled carbon nanotubes/Cd0. 8Zn0. 2S nanocomposite and its photocatalytic hydrogen production under visible-light, Int. J. Hydrogen Energy 37 (2012) 1375-1384.

DOI: 10.1016/j.ijhydene.2011.10.030

Google Scholar

[95] P. Gomathisankar, K. Hachisuka, H. Katsumata, T. Suzuki, K. Funasaka, S. Kaneco, Photocatalytic hydrogen production with CuS/ZnO from aqueous Na2S + Na2SO3 solution, Int. J. Hydrogen Energy 38 (2013) 8625-8630.

DOI: 10.1016/j.ijhydene.2013.04.131

Google Scholar

[96] W. Bai, K. Yu, Q. Zhang, X. Zhu, D. Peng, Z. Zhu, N. Dai, Y. Sun, Large-scale synthesis of zinc oxide rose-like structures and their optical properties, Physica E: Low-dimensional Systems and Nanostructures. 40 (2008) 822-827.

DOI: 10.1016/j.physe.2007.10.019

Google Scholar

[97] P. Chen, L. Gu, X. Xue, Y. Song, L. Zhu, X. Cao, Facile synthesis of highly uniform ZnO multipods as the supports of Au and Ag nanoparticles, Mater. Chem. Phys. 122 (2010) 41-48.

DOI: 10.1016/j.matchemphys.2010.03.001

Google Scholar

[98] T.T. Vu, L.D. Rio, T.V. Solis, G. Marban, Tailoring the synthesis of stainless steel wire mesh-supported ZnO, Mater. Res. Bull. 47 (2012) 1577-1586.

DOI: 10.1016/j.materresbull.2012.02.017

Google Scholar

[99] S. Baruah, J. Dutta, Hydrothermal growth of ZnO nanostructures, Sci. Technol. Adv. Mater. 10 (2009) 013001 (18 pages).

Google Scholar

[100] M.H. Hsu, C.J. Chang, S-doped ZnO nanorods on stainless-steel wire mesh an immobilized hierarchical photocatalysts for photocatalytic H2 production, Int. J. Hydrogen Energy 39 (2014) 16524-16533.

DOI: 10.1016/j.ijhydene.2014.02.110

Google Scholar

[101] F. Akbal, Photocatalytic degradation of organic dyes in the presence of titanium dioxide under UV and solar light: effect of operational parameters, Environ. Prog. 24 (2005) 317-322.

DOI: 10.1002/ep.10092

Google Scholar

[102] R.J. Tayade, R.G. Kulkarni, R.V. Jasra, Transition metal ion impregnated mesoporous TiO2 for photocatalytic degradation of organic contaminants in water, Ind. Eng. Chem. Res. 45 (2006) 5231-5238.

DOI: 10.1021/ie051362o

Google Scholar

[103] S. Malato, P.F. Ibanez, M.I. Maldonado, J. Blanco, W. Gernjak, Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends Catal. Today 147 (2009)1-59.

DOI: 10.1016/j.cattod.2009.06.018

Google Scholar

[104] X. Wang, T.T. Lim, Solvothermal synthesis of C–N codoped TiO2 and photocatalytic evaluation for bisphenol A degradation using a visible-light irradiated LED photoreactor, Appl. Catal. B: Environ. 100 (2010) 355-364.

DOI: 10.1016/j.apcatb.2010.08.012

Google Scholar

[105] H.W. Chen, Y. Ku, C.Y. Wu, Effect of LED optical characteristics on temporal behavior of o-cresol decomposition by UV/TiO2 process, J. Chem. Technol. Biotechnol. 82 (2007) 626-635.

DOI: 10.1002/jctb.1718

Google Scholar

[106] R.J. Tayade, T.S. Natarajan, H.C. Bajaj, Photocatalytic degradation of methylene blue dye using ultraviolet light emitting diodes, Ind. Eng. Chem. Res. 48 (2009) 10262-10267.

DOI: 10.1021/ie9012437

Google Scholar

[107] W.K. Jo, R.J. Tayade, New generation energy-efficient light source for photocatalysis: LEDs for environmental applications, Ind. Eng. Chem. Res. 53 (2014) 2073-(2084).

DOI: 10.1021/ie404176g

Google Scholar

[108] W.K. Jo, R.J. Tayade, Recent developments in photocatalytic dye degradation upon irradiation with energy-efficient light emitting diodes, Chinese J. Catal. (2014) DOI: 10. 1016/S1872-2067(14) 60205-9.

DOI: 10.1016/s1872-2067(14)60205-9

Google Scholar

[109] M. Mori, A. Hamamoto, A. Takahashi, M. Nakano, N. Wakikawa, S. Tachibana, T. Ikehara, Y. Nakaya, M. Akutagawa, Y. Kinouchi, Development of a new water sterilization device with a 365 nm UV-LED, Med. Biol. Eng. Comput. 45 (2007) 1237-1241.

DOI: 10.1007/s11517-007-0263-1

Google Scholar

[110] T.S. Natarajan, M. Thomas, K. Natarajan, H.C. Bajaj, R.J. Tayade, Study on UV-LED/TiO2 process for degradation of Rhodamine B dye, Chem. Eng. J. 169 (2011) 126-134.

DOI: 10.1016/j.cej.2011.02.066

Google Scholar

[111] T.S. Natarajan, K. Natarajan, H.C. Bajaj, R.J. Tayade, Energy efficient UV-LED source and TiO2 nanotube array-based reactor for photocatalytic application, Ind. Eng. Chem. Res. 50 (2011) 7753-7762.

DOI: 10.1021/ie200493k

Google Scholar

[112] K. Natarajan, T.S. Natarajan, H.C. Bajaj, R.J. Tayade, Photocatalytic reactor based on UV-LED/TiO2 coated quartz tube for degradation of dyes, Chem. Eng. J. 178 (2011) 40-49.

DOI: 10.1016/j.cej.2011.10.007

Google Scholar

[113] W.K. Jo, Y. Won, I. Hwang, R.J. Tayade, Enhanced photocatalytic degradation of aqueous nitrobenzene using graphitic carbon-TiO2 composites, Ind. Eng. Chem. Res. 53 (2014) 3455-3461.

DOI: 10.1021/ie500245d

Google Scholar

[114] W.K. Jo, G.T. Park, R.J. Tayade, Synergetic effect of adsorption on degradation of malachite green dye under blue LED irradiation using spiral-shaped photocatalytic reactor, J. Chem. Technol. Biotechnol. (2014) DOI: 10. 1002/jctb. 4547.

DOI: 10.1002/jctb.4547

Google Scholar

[115] J. Yu, Y. Hai, B. Cheng, Enhanced photocatalytic H2 production activity of TiO2 by Ni(OH)2 cluster modification, J. Phys. Chem. C 115 (2011) 4953-4958.

DOI: 10.1021/jp111562d

Google Scholar

[116] J. Yu, Y. Hai, M. Jaroniec, Photocatalytic hydrogen production over CuO-modified titania, J. Colloid. Interface. Sci. 357 (2011) 223-228.

DOI: 10.1016/j.jcis.2011.01.101

Google Scholar

[117] P. Gomathisankar, D. Yamamoto, H. Katsumata, T. Suzuki, S. Kaneco, Photocatalytic hydrogen production with aid of simultaneous metal deposition using titanium dioxide from aqueous glucose solution, Int. J. Hydrogen Energy 38 (2013) 5517-5524.

DOI: 10.1016/j.ijhydene.2013.03.014

Google Scholar