Use of Organic Polymers for Energy Storage in Electrochemical Capacitors

Article Preview

Abstract:

In this article, brief introduction and mechanism of electrochemical capacitors are revised. The main features of electrochemical capacitors and batteries about electrical energy storage devices are also compared. It is well known that various types of materials (organic, inorganic, organic-inorganic composites and organic/organic composites) are being used as electrochemical capacitors. A vast literature is available on the preparation, properties and applications of electrochemical capacitors. In this communication, important aspects related to the synthesis and evaluation of organic electrodes for use in electrochemical capacitors is encapsulated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

202-228

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li, L. Zhang, Progress of electrochemical capacitor electrode materials: A review, Int. J. Hydrogen Energy 34 (2009) 4889-4899.

DOI: 10.1016/j.ijhydene.2009.04.005

Google Scholar

[2] R. Kötz, M. Carlen, Principles and applications of electrochemical capacitors, Electrochim. Acta 45 (2000) 2483-2498.

DOI: 10.1016/s0013-4686(00)00354-6

Google Scholar

[3] E. Frackowiak, F. Béguin, Carbon materials for the electrochemical storage of energy in capacitors, Carbon 39 (2001) 937-950.

DOI: 10.1016/s0008-6223(00)00183-4

Google Scholar

[4] A. Burke, Ultracapacitors: why, how, and where is the technology, J. Power Sources 19 (2000) 37-50.

Google Scholar

[5] B.E. Conway, Transition from Supercapacitor" to "Battery, Behavior in Electrochemical Energy Storage, J. Electrochem. Soc. 138 (1991) 1539-1548.

DOI: 10.1149/1.2085829

Google Scholar

[6] B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals And Technological Applications; Kluwer Academic Publishers/Plenum Press, Dordrecht/New York, (1999).

Google Scholar

[7] M.S. Wu, C.J. Chiang, Fabrication of Nanostructured Manganese Oxide Electrodes for Electrochemical Capacitors, Electrochem. Solid-State Lett. 7 (2004) A123-A126.

DOI: 10.1149/1.1695533

Google Scholar

[8] W. Sugimoto, H. Iwata, Y. Murakami, Y. Takasu, Electrochemical Capacitor Behavior of Layered Ruthenic Acid Hydrate, J. Electrochem. Soc. 151 (2004) A 1181-1187.

DOI: 10.1149/1.1765681

Google Scholar

[9] X. Dong, W. Shen, J. Gu, L. Xiong, Y. Zhu, H. Li, J. Shi, MnO2-embedded-in-mesoporous-carbon-wall structure for use as electrochemical capacitors, J. Phys. Chem. B 110 (2006) 6015-6019.

DOI: 10.1021/jp056754n

Google Scholar

[10] C. Peng, S. Zhang, D. Jewell, G.Z. Chen, Carbon nanotube and conducting polymer composites for supercapacitors, Prog. Nat. Sci. 18 (2008) 777-788.

DOI: 10.1016/j.pnsc.2008.03.002

Google Scholar

[11] J.R. Miller, P. Simon, Fundamentals of Electrochemical Capacitor Design and Operation, Electrochem. Soc. Interface 17 (2008) 31-32.

DOI: 10.1149/2.f02081if

Google Scholar

[12] J. Du, D. Mishra, J-M. Ting, Surface Modified Carbon Cloth for Use in Electrochemical Capacitor, Appl. Surf. Sci. 285P (2013) 483-489.

DOI: 10.1016/j.apsusc.2013.08.081

Google Scholar

[13] F. Zhang, F. Xiao, Z. H. Dong, W. Shi, Synthesis of Polypyrrole Wrapped Graphene Hydrogels Composites as Supercapacitor Electrodes, Electrochim. Acta 114 (2013) 125-132.

DOI: 10.1016/j.electacta.2013.09.153

Google Scholar

[14] E. Hür, G.A. Varol, A. Arslan, The Study of Polythiophene, Poly(3-methylthiophene) and Poly(3, 4-ethylenedioxythiophene) on Pencil Graphite Electrode as an Electrode Active Material for Supercapacitor Applications, Synthetic Metals 184 (2013).

DOI: 10.1016/j.synthmet.2013.09.028

Google Scholar

[15] S.K. Nataraj, Q. Song, S.A. Al-Muhtaseb, S.E. Dutton, Q. Zhang, E. Sivaniah, Thin, Flexible Supercapacitors Made from Carbon Nanofiber Electrodes Decorated at Room Temperature with Manganese Oxide Nanosheets, Journal of Nanomaterials, Article ID 272093, 6 pages (2013).

DOI: 10.1155/2013/272093

Google Scholar

[16] A. Vu, X. Li, J. Phillips, A. Han, W.H. Smyrl, P. Buhlmann, A. Stein. Three-Dimensionally Ordered Mesoporous (3DOm) Carbon Materials as Electrodes for Electrochemical Double-Layer Capacitors with Ionic Liquid Electrolytes, Chemistry of Materials 25 (2013).

DOI: 10.1021/cm400915p

Google Scholar

[17] M.N. Muralidharan, A. Seema, M.M.S. Mohan, K.R. Dayas, E.K. Sunny, Tween 80 Modified Graphene with Improved Processability for the Fabrication of Supercapacitors, Mater. Manuf. Processes 28 (2013) 1253-1259.

DOI: 10.1080/10426914.2013.792415

Google Scholar

[18] J. Kuipers, S. Porada, Wireless Desalination using Inductively Powered Porous Carbon Electrodes, Sep. Purif. Technol. 120 (2013) 6-11.

DOI: 10.1016/j.seppur.2013.09.015

Google Scholar

[19] B. He, X. Meng, Y. Zhu, Q. Tang, Preparation and Electrochemical Properties of Polyaniline/α-RuCl3. xH2O Composites for Supercapacitor, Polym. Compos. (2013) 2142-2147.

DOI: 10.1002/pc.22623

Google Scholar

[20] D. Zhang, Q-Q. Dong, X. Wang, W. Yan, W. Deng, L-Y. Shi, Preparation of a Three-Dimensional Ordered Macroporous Carbon Nanotube/Polypyrrole Composite for Supercapacitors and Diffusion Modeling, J. Phys. Chem. C 117 (2013) 20446-20455.

DOI: 10.1021/jp405850w

Google Scholar

[21] P. Kalyani, A. Anitha, Refuse Derived Energy - Tea Derived Boric Acid Activated Carbon as an Electrode Material for Electrochemical Capacitors, Portugaliae Electrochimica Acta 31 (2013) 165-174.

DOI: 10.4152/pea.201303165

Google Scholar

[22] J.H. Lee, N. Park, B.G. Kim, D.S. Jung, K. Im, J. Hur, J. W. Choi, Restacking−Inhibited 3D Reduced Graphene Oxide for High Performance Supercapacitor Electrodes, Nano 7 (2013) 9366-9374.

DOI: 10.1021/nn4040734

Google Scholar

[23] Y. Mun, C. Jo, T. Hyeon, J. Lee, K-S. Ha, K-W. Jun, S-H. Lee, S-W. Hong, H. I. Lee, S. Yoon, J. Lee, Simple Synthesis of Hierarchically Structured Partially Graphitized Carbon by Emulsion/Block-Copolymer Co-Template Method for High Power Supercapacitors, Carbon 64 (2013).

DOI: 10.1016/j.carbon.2013.07.092

Google Scholar

[24] Z.J. Zhang, P. Cui, X.Y. Chen, Structure and Capacitive Performance of Porous Carbons Derived from Terephthalic Acid−Zinc Complex via a Template Carbonization Process, Industrial & Engineering Chemistry Research 52 (2013) 16211-16219.

DOI: 10.1021/ie402482s

Google Scholar

[25] L. Deng, R.J. Young, D.A.D. Haro-Del Rio, I.A. Kinloch, A.M. Abdelkader, S.J. Eichhorn, S.M. Holmes, Supercapacitance from Cellulose and Carbon Nanotube Nanocomposite Fibers, Applied Material Interfaces 5 (2013) 9983-9990.

DOI: 10.1021/am403622v

Google Scholar

[26] S.N. Syahidah, S.R. Majid, Super-Capacitive Electro-Chemical Performance of Polymer Blend Gel Polymer Electrolyte (GPE) in Carbon-Based Electrical Double-Layer Capacitors, Electrochim. Acta 112 (2013) 678-685.

DOI: 10.1016/j.electacta.2013.09.008

Google Scholar

[27] Z. Guo, Q. Zhou, Z. Wu, Z. Zhang, W. Zhang, Y. Zhang, L. Li, Z. Cao, H. Wang, Y. Gao, Nitrogen-Doped Carbon based on Peptides of Hair as Electrode Materials for Surpercapacitors, Electrochim. Acta 113 (2013) 620-627.

DOI: 10.1016/j.electacta.2013.09.112

Google Scholar

[28] P. Huang, D. Pech, R. Lin, J. K. McDonough, M. Brunet, P-L. Taberna,Y. Gogotsi, P. Simon, On-Chip Micro-Supercapacitors for Operation in a Wide Temperature Range, Electrochem. Commun. 36 (2013) 53-56.

DOI: 10.1016/j.elecom.2013.09.003

Google Scholar

[29] Z.L. evic, P.Y. Apel, J.B. Krstic, I.V. Blonskaya, Porous Carbon Thin Films for Electrochemical Capacitors, Carbon 64 (2013) 456-463.

DOI: 10.1016/j.carbon.2013.07.098

Google Scholar

[30] J. Wei, S. Wei, G. Wang, X. He, B. Gao, C. Zhao, PPy Modified Titanium Foam Electrode with High Performance for Supercapacitor, Eur. Polym. J. 49 (2013) 3651-3656.

DOI: 10.1016/j.eurpolymj.2013.08.001

Google Scholar

[31] C. Xia, Y. Xie, Y. Wang, W. Wang, H. Du, F. Tian, Preparation and Capacitance Performance of Polyaniline/Titanium Nitride Nanotube Hybrid, J. Appl. Electrochem. 43 (2013) 1225-1233.

DOI: 10.1007/s10800-013-0610-x

Google Scholar

[32] J-H. Lee, I-J. Kim, S-J. Park, Preparation and Electrochemical Behaviors of Styrene–Acrylonitrile-Based Porous Carbon Electrodes, Electrochim. Acta 113 (2013) 23-28.

DOI: 10.1016/j.electacta.2013.09.006

Google Scholar

[33] R. A. Quinlan, J. R. Miller, M. Cai, A. N. Mansour, R. A. Outlaw, S. M. Butler, Investigation of Defects Generated in Vertically Oriented Graphene, Carbon 64 (2013) 92-100.

DOI: 10.1016/j.carbon.2013.07.040

Google Scholar

[34] Z. Lei, T. Sakai, W. Sugimoto, Lateral Size Effect on Electrochemical Capacitor Performance of Reduced Graphite Oxide Nanosheets, Electrochemistry 81 (2013) 873-876.

DOI: 10.5796/electrochemistry.81.873

Google Scholar

[35] L. Hou, L. Lian, D. Li, G. Pang, J. Li, X. Zhang, S. Xiong, C. Yuan, Mesoporous N-containing Carbon Nanosheets Towards High-Performance Electrochemical Capacitors, Carbon 64 (2013) 141-149.

DOI: 10.1016/j.carbon.2013.07.045

Google Scholar

[36] G. Bajwa, M. Genovese, K. Lian, Multilayer Polyoxometalates-Carbon Nanotube Composites for Electrochemical Capacitors, Journal of Solid State Science and Technology 2 (2013) M3046-M3050.

DOI: 10.1149/2.005310jss

Google Scholar

[37] Y. Zhao, H. Wang, G. Gao L. Qi, Nanofiber Membrane Based on Ionic Liquids as High-Performance Polymer Electrolyte for Sodium Electrochemical Device, Ionics 19 (2013) 1595-1602.

DOI: 10.1007/s11581-013-0893-2

Google Scholar

[38] S. S. Shinde, G. S. Gund, V. S. Kumbhar, B. H. Patil, C. D. Lokhande, Novel Chemical Synthesis of Polypyrrole Thin Film Electrodes for Supercapacitor Application, Eur. Polym. J. 49 (2013) 3734-3739.

DOI: 10.1016/j.eurpolymj.2013.07.032

Google Scholar

[39] S. Hussain, R. Amade, E. Bertran, E. Jover, Nitrogen Plasma Functionalization of Carbon Nanotubes for Supercapacitor Applications, J. Mater. Sci. 48 (2013) 7620-7628.

DOI: 10.1007/s10853-013-7579-z

Google Scholar

[40] A. K. Sarker, J-D. Hong, Electrochemical Reduction of Ultrathin Graphene Oxide/Polyaniline Films for Supercapacitor Electrodes with a High Specific Capacitance, Colloids Surf., A 436 (2013) 967-974.

DOI: 10.1016/j.colsurfa.2013.08.043

Google Scholar

[41] H. Zhu, S. Peng, W. Jiang, Electrochemical Properties of PANI as Single Electrode of Electrochemical Capacitors in Acid Electrolytes, Hindawi Publishing Corporation, The Scientific World Journal (2013) paghttp: /dx. doi. org/10. 1155/2013/940153.

DOI: 10.1155/2013/940153

Google Scholar

[42] B. Yue, C. Wang, X. Ding, G. G. Wallace, Electrochemically Synthesized Stretchable Polypyrrole/Fabric Electrodes for Supercapacitor, Electrochim. Acta 113 (2013) 17-22.

DOI: 10.1016/j.electacta.2013.09.024

Google Scholar

[43] J. Liu, M. Notarianni, G. Will, V. T. Tiong, H. Wang, N. Motta, Electrochemically Exfoliated Graphene for Electrode Films: Effect of Graphene Flake Thickness on the Sheet Resistance and Capacitive Properties, Langmuir 29 (2013) 13307-13314.

DOI: 10.1021/la403159n

Google Scholar

[44] C-I. Su, W-C. Shih, C-M. Wang, Y-S. Liu, S-P. Wu, Effect of High Temperature Treatment on Electrochemical Properties of Activated Carbon Fabric in Supercapacitor Application, Fibers Polym. 14 (2013) 1808-1816.

DOI: 10.1007/s12221-013-1808-6

Google Scholar

[45] Y. Yan, Q. Cheng, Z. Zhu, V. Pavlinek, P. Saha, C. Li, Controlled Synthesis of Hierarchical Polyaniline Nanowires/Ordered Bimodal Mesoporous Carbon Nanocomposites with High Surface Area for Supercapacitor Electrodes, J. Power Sources 240 (2013).

DOI: 10.1016/j.jpowsour.2013.03.190

Google Scholar

[46] N. S. A. Manaf, M. S. A. Bistamam, M. A. Azam, Development of High Performance Electrochemical Capacitor: A Systematic Review of Electrode Fabrication Technique Based on Different Carbon Materials, Journal of Solid State Science and Technology 2 (2013).

DOI: 10.1149/2.014310jss

Google Scholar

[47] J. Jiang, L. Zhang, X. Wang, N. Holm, K. Rajagopalan, F. Chen, S. Ma, Highly Ordered Macroporous Woody Biochar with Ultra-High Carbon Content as Supercapacitor Electrodes, Electrochim. Acta 113 (2013) 481-489.

DOI: 10.1016/j.electacta.2013.09.121

Google Scholar

[48] S. T. Senthilkumar, R. Kalai Selvan, J. S. Melo, C. Sanjeeviraja, High Performance Solid-State Electric Double Layer Capacitor from Redox Mediated Gel Polymer Electrolyte and Renewable Tamarind Fruit Shell Derived Porous Carbon, Applied Materials Interfaces 5 (2013).

DOI: 10.1021/am402162b

Google Scholar

[49] X. Liu, L. Zhou, Y. Zhao, L. Bian, X. Feng, Q. Pu, Hollow, Spherical Nitrogen-Rich Porous Carbon Shells Obtained from a Porous Organic Framework for the Supercapacitor, Applied Materials Interfaces 5 (2013) 10280-10287.

DOI: 10.1021/am403175q

Google Scholar

[50] M. Ghaffari, S. Kosolwattana, Y. Zhou, N. Lachman, M. Lin, D. Bhattacharya, K. K. Gleason, B. L. Wardle, Q. M. Zhang, Hybrid Supercapacitor Materials from Poly(3, 4 ethylenedioxythiophene) Conformally Coated Aligned Carbon Nanotubes, Electrochim. Acta 112 (2013).

DOI: 10.1016/j.electacta.2013.08.191

Google Scholar

[51] Y. Zhu, I. Zhitomirsky, Influence of Dopant Structure and Charge on Supercapacitive Behavior of Polypyrrole Electrodes with High Mass Loading, Synth. Met. 185-186 (2013) 126-132.

DOI: 10.1016/j.synthmet.2013.10.015

Google Scholar

[52] Sliwak, B. Grzyb, J. Cwikła, G. Gryglewicz, Influence of Wet Oxidation of Herringbone Carbon Nanofibers on the Pseudocapacitance Effect, Carbon 64 (2013) 324-333.

DOI: 10.1016/j.carbon.2013.07.082

Google Scholar

[53] G. Gourdin, D. Zheng, P. H. Smith, D. Qu, In situ Electrochemical-Mass Spectroscopic Investigation of Solid Electrolyte Interphase Formation on the Surface of a Carbon Electrode, Electrochim. Acta 112 (2013) 735-746.

DOI: 10.1016/j.electacta.2013.08.108

Google Scholar

[54] P. Yu, Y. Li, X. Zhao, L. Wu, Q. Zhang, In Situ Growth of Ordered Polyaniline Nanowires on Surfactant Stabilized Exfoliated Graphene as High-Performance Supercapacitor Electrodes, Synth. Met. 185-186 (2013) 89-95.

DOI: 10.1016/j.synthmet.2013.10.010

Google Scholar

[55] M. Suleman, Y. Kumar, S. A. Hashmi, Structural and Electrochemical Properties of Succinonitrile-Based Gel Polymer Electrolytes: Role of Ionic Liquid Addition, J. Phys. Chem. B 117 (2013) 7436-7443.

DOI: 10.1021/jp312358x

Google Scholar

[56] D. Yigit, T. Güngör, M. Güllü, Poly(thieno[3, 4-b][1, 4]dioxine) and Poly([1, 4]dioxino[2, 3-c] pyrrole) Derivatives: p- and n-Dopable Redox-Active Electrode Materials for Solid State Supercapacitor Applications, Org. Electron. 14 (2013).

DOI: 10.1016/j.orgel.2013.09.037

Google Scholar

[57] A. Singh, P. Srinivasan, G. Sukumaran, Polyaniline Binder for Functionalized Acetylene Black: A Hybrid Material for Supercapacitor, Synth. Met. 180 (2013) 43–48.

DOI: 10.1016/j.synthmet.2013.07.022

Google Scholar

[58] M. Kotal, A. K. Thakur, A. K. Bhowmick, Polyaniline−Carbon Nanofiber Composite by a Chemical Grafting Approach and Its Supercapacitor Application, Applied Materials Interfaces 5 (2013) 8374−8386.

DOI: 10.1021/am4014049

Google Scholar

[59] A. M. O. sterholm, D. E. Shen, A. L. Dyer, J. R. Reynolds, Optimization of PEDOT Films in Ionic Liquid Supercapacitors: Demonstration As a Power Source for Polymer Electrochromic Devices, Applied Materials Interfaces 5 (2013) 13432−13440.

DOI: 10.1021/am4043454

Google Scholar

[60] H. Qian, A. R. Kucernak, M. S. P. Shaffer, E. S. Greenhalgh, A. Bismarck, Multifunctional Structural Supercapacitor Composites Based on Carbon Aerogel Modified High Performance Carbon Fiber Fabric, Applied Materials Interfaces 5 (2013) 6113−6122.

DOI: 10.1021/am400947j

Google Scholar

[61] J. Benson, I. Kovalenko, S. Boukhalfa, D. Lashmore, M. Sanghadasa, G. Yushin, Multifunctional CNT-Polymer Composites for Ultra-Tough Structural Supercapacitors and Desalination Devices, Adv. Mater. 25 (2013) 6625-6632.

DOI: 10.1002/adma.201301317

Google Scholar

[62] V. Sridhar, I. Lee, H-S. Yoon, H-H. Chun, H. Park, Microwave Synthesis of Three Dimensional Graphene-Based Shell-Plate Hybrid Nanostructures, Carbon 61 (2013) 633-639.

DOI: 10.1016/j.carbon.2013.05.048

Google Scholar

[63] K. Shi, I. Zhitomirsky, Fabrication of Polypyrrole-Coated Carbon Nanotubes using Oxidant−Surfactant Nanocrystals for Supercapacitor Electrodes with High Mass Loading and Enhanced Performance, Applied Materials Interfaces 5 (2013) 13161-13170.

DOI: 10.1021/am404159b

Google Scholar

[64] D. Xu, Q. Xu, K. Wang, J. Chen, Z. Chen, Fabrication of Free-Standing Hierarchical Carbon Nanofiber/Graphene Oxide/Polyaniline Films for Supercapacitors, Applied Materials Interfaces 6 (2014) 200-209.

DOI: 10.1021/am404799a

Google Scholar

[65] K. Shi, I. Zhitomirsky, Electrophoretic Nanotechnology of Graphene–Carbon Nanotube and Graphene–Polypyrrole Nanofiber Composites for Electrochemical Supercapacitors, J. Colloid Interface Sci. 407 (2013) 474-481.

DOI: 10.1016/j.jcis.2013.06.058

Google Scholar

[66] S. Chaudhari, Y. Sharma, P. S. Archana, R. Jose, S. Ramakrishna, S. Mhaisalkar, M. Srinivasan, Electrospun Polyaniline Nanofibers Web Electrodes for Supercapacitors, J. Appl. Polym. Sci. (2013) 1660-1668.

DOI: 10.1002/app.38859

Google Scholar

[67] S. Cho, K-H. Shin, J. Jang, Enhanced Electrochemical Performance of Highly Porous Supercapacitor Electrodes Based on Solution Processed Polyaniline Thin Films, Applied Materials Interfaces 5 (2013) 9186-9193.

DOI: 10.1021/am402702y

Google Scholar

[68] J. Ma, Y. Liu, Z. Hu, Z. Xu, Electrochemical Synthesis and Performance of PANI Electrode Material for Electrochemical Capacitor, Ionics 19 (2013) 1405-1413.

DOI: 10.1007/s11581-013-0861-x

Google Scholar

[69] M. H. Ervin, R. T. Murray, C. M. Pereira, J. R. Miller, R. A. Outlaw, J. Rastegar, Graphene-Based and Other Electrochemical Double Layer Capacitors for Energy Harvesting Systems, Journal of Solid State Science and Technology 2 (2013) M3135-M3139.

DOI: 10.1149/2.019310jss

Google Scholar

[70] F. Liu, C. W. Lee, J. S. Im, Graphene-Based Carbon Materials for Electrochemical Energy Storage, Hindawi Publishing Corporation Journal of Nanomaterials (2013).

Google Scholar

[71] R. A. Fisher, M. R. Watt, W. J. Ready, Functionalized Carbon Nanotube Supercapacitor Electrodes: A Review on Pseudocapacitive Materials, Journal of Solid State Science and Technology 2 (2013) M3170-M3177.

DOI: 10.1149/2.017310jss

Google Scholar

[72] Z-D. Huang, R. Liang, B. Zhang, Y. -B. He, J-K. Kim, Evolution of Flexible 3D Graphene Oxide/Carbon Nanotube/Polyaniline Composite Papers and Their Supercapacitive Performance, Compos. Sci. Technol. 88 (2013) 126-133.

DOI: 10.1016/j.compscitech.2013.08.038

Google Scholar

[73] S. Dhibar, S. Sahoo, C. K. Das, Fabrication of Transition-Metal-Doped Polypyrrole/Multiwalled Carbon Nanotubes Nanocomposites for Supercapacitor Applications, J. Appl. Polym. Sci. (2013) DOI: 10. 1002/APP. 39176.

DOI: 10.1002/app.39176

Google Scholar

[74] N. Nambu, R. Takahashi, K. Suzuki, Y. Sasaki, Electrolytic Properties of Tetramethylammonium Compound in Highly Concentrated Solutions and Its Application to Electric Double-Layer Capacitors, Electrochemistry 81 (2013) 811-813.

DOI: 10.5796/electrochemistry.81.811

Google Scholar

[75] S. Kumagai, M. Sato, D. Tashima, Electrical Double-Layer Capacitance of Micro- and Mesoporous Activated Carbon Prepared from Rice Husk and Beet Sugar, Electrochim. Acta114 (2013) 617-626.

DOI: 10.1016/j.electacta.2013.10.060

Google Scholar

[76] M. A. Azam, N. S. A. Manaf , E. Talib, M. S. A. Bistamam, Aligned Carbon Nanotube from Catalytic Chemical Vapor Deposition Technique for Energy Storage Device: A Review, Ionics 19 (2013) 1455-1476.

DOI: 10.1007/s11581-013-0979-x

Google Scholar

[77] H. Kokubo, T. Honda, S. Imaizumi, K. Dokko, M. Watanabe, Effects of Carbon Electrode Materials on Performance of Ionic Polymer Actuators Having Electric Double-Layer Capacitor Structure, Electrochemistry 81(2013) 849-852.

DOI: 10.5796/electrochemistry.81.849

Google Scholar

[78] M. Tokita, M. Egashira, N. Yoshimoto, M. Morita, Capacitor Properties of Carbon Electrodes Derived from α-Cyclodextrin, Electrochemistry 81 (2013) 804-807.

DOI: 10.5796/electrochemistry.81.804

Google Scholar

[79] K. Soeda, M. Yamagata, S. Yamazaki, M. Ishikawa, Application of Chitosan-based Gel Electrolytes with Ionic Liquids for High-Performance and Safe Electric Double Layer Capacitors, Electrochemistry 81 (2013) 867-872.

DOI: 10.5796/electrochemistry.81.867

Google Scholar

[80] G-H. An, H-J. Ahn, Activated Porous Carbon Nanofibers using Sn Segregation for High-Performance Electrochemical Capacitors, Carbon 65 (2013) 87-96.

DOI: 10.1016/j.carbon.2013.08.002

Google Scholar

[81] A. Jain, V. Aravindan, S. Jayaraman, P. S. Kumar, R. Balasubramanian, S. Ramakrishna, S. Madhavi, M. P. Srinivasan, Activated Carbons Derived from Coconut Shells as High Energy Density Cathode Material for Li-Ion Capacitors (2013).

DOI: 10.1038/srep03002

Google Scholar

[82] N.S.A. Manaf, M.S.A. Bistamam, M.A. Azam, Development of High Performance Electrochemical Capacitor: A Systematic Review of Electrode Fabrication Technique Based on Different Carbon Materials, Journal of Solid State Science and Technology 2 (2013).

DOI: 10.1149/2.014310jss

Google Scholar

[83] A.L. Comte, G. Pognon, T. Brousse, D. Bélanger, Determination of the Quinone-loading of a Modified Carbon Powder-based Electrode for Electrochemical Capacitor, Electrochemistry 81 (2013) 863–866.

DOI: 10.5796/electrochemistry.81.863

Google Scholar

[84] G. Xu, D. Xu, J. Zhang, K. Wang, Z. Chen, J. Chen, Q. Xu, Controlled Fabrication of PANI/CNF Hybrid Films: Molecular Interaction Induced Various Micromorphologies and Electrochemical Properties, J. Colloid Interface Sci. 411 (2013) 204-212.

DOI: 10.1016/j.jcis.2013.08.024

Google Scholar

[85] H. Zhang, J. Wang, X. Gao, Z. Wang, S. Wang, The Electrochemical Activity of Polyaniline: An Important Issue on Its use in Electrochemical Energy Storage Devices, Synth. Met. 187 (2014) 46–51.

DOI: 10.1016/j.synthmet.2013.10.022

Google Scholar

[86] F. Yu, M. Huang, J. Wu, Z. Qiu, L. Fan, J. Lin, Y. Lin, A Redox-Mediator-Doped Gel Polymer Electrolyte Applied in Quasi-Solid-State Supercapacitors, J. Appl. Polym. Sci. (2014) DOI: 10. 1002/APP. 39784.

DOI: 10.1002/app.39784

Google Scholar

[87] D-Y. Kang, J. H. Moon, Carbon Nanotube Balls and Their Application in Supercapacitors, Applied Materials Interfaces 6 (2014) 706-711.

DOI: 10.1021/am404960r

Google Scholar

[88] Y. Lu, F. Zhang, T. Zhang, K. Leng, L. Zhang, X. Yang, Y. Ma, Y. Huang, M. Zhang, Y. Chen, Synthesis and Supercapacitors Performance Studies of N-Doped Graphene Materials Using o-Phenylenediamine as the Double-N Precursor, Carbon 63 (2014).

DOI: 10.1016/j.carbon.2013.07.026

Google Scholar

[89] Y. He, W. Chen, J. Zhou, X. Li, P. Tang, Z. Zhang, J. Fu, E. Xie, Constructed Uninterrupted Charge-Transfer Pathways in Three Dimensional Micro/Nanointerconnected Carbon-Based Electrodes for High Energy-Density Ultralight Flexible Supercapacitors, Applied Materials Interfaces 6 (2014).

DOI: 10.1021/am403760h

Google Scholar

[90] Z-L. Wang, X-J. He, S-H. Ye, Y-X. Tong, G-R. Li, Design of Polypyrrole/Polyaniline Double-Walled Nanotube Arrays for Electrochemical Energy Storage, Applied Materials Interfaces 6 (2014) 642-647.

DOI: 10.1021/am404751k

Google Scholar

[91] Q. Chen, Y. Meng, C. Hu, Y. Zhao, H. Shao, N. Chen, L. Qu, MnO2-Modified Hierarchical Graphene Fiber Electrochemical Supercapacitor, J. Power Sources 247 (2014) 32-39.

DOI: 10.1016/j.jpowsour.2013.08.045

Google Scholar

[92] L. Sun, C. Wang, Y. Zhou Q. Zhao, X. Zhang J. Qiu, Activated Nitrogen-Doped Carbons from Polyvinyl Chloride for High-Performance Electrochemical Capacitors, J. Solid State Electrochem. 18 (2014) 49-58.

DOI: 10.1007/s10008-013-2227-8

Google Scholar

[93] S. Isikli, M. Lecea, M. Ribagorda, M. C. Carren˜o, R. Diaz, Influence of Quinone Grafting via Friedel–Crafts Reaction on Carbon Porous Structure and Supercapacitor Performance, Carbon 66 (2014) 654-661.

DOI: 10.1016/j.carbon.2013.09.062

Google Scholar

[94] H-S. Park, M-H. Lee, R. Y. Hwang, O-K. Park, K. Jo, T. Lee, B-S. Kim, H-K. Song, Kinetically Enhanced Pseudocapacitance of Conducting Polymer Doped with Reduced Graphene Oxide Through a Miscible Electron Transfer Interface, Nano Energy 3 (2014).

DOI: 10.1016/j.nanoen.2013.10.001

Google Scholar

[95] F. Soavi, C. Arbizzani, M. Mastragostino, Leakage Currents and Self-Discharge of Ionic Liquid-Based Supercapacitors, Jornal of Applied Electrochemistry 44 (2014) 491-496.

DOI: 10.1007/s10800-013-0647-x

Google Scholar

[96] Q. Wang, J. Yan, Z. Fan, T. Wei, M. Zhang, X. Jing, Mesoporous Polyaniline Film on Ultra-Thin Graphene Sheets for High Performance Supercapacitors, J. Power Sources 247 (2014) 197-203.

DOI: 10.1016/j.jpowsour.2013.08.076

Google Scholar

[97] J. Yang, M. R. Jo, M. Kang, Y. S. Huh, Y-M. Kang, H. Jung, Rapid and Controllable Synthesis of Nitrogen Doped Reduced Graphene Oxide using Microwave-Assisted Hydrothermal Reaction for High Power-Density Supercapacitors, Carbon 73 (2014) 106-113.

DOI: 10.1016/j.carbon.2014.02.045

Google Scholar

[98] H. Zanin, E. Saito, H. J. Ceragioli, V. Baranauskas, E. J. Corat, Reduced Graphene Oxide and Vertically Aligned Carbon Nanotubes Superhydrophilic Films for Supercapacitors Devices, Mater. Res. Bull. 49 (2014) 487-493.

DOI: 10.1016/j.materresbull.2013.09.033

Google Scholar

[99] E. J. Ra, M-H. Tran, S. Yang, T. H. Kim, C-S. Yang, Y. J. Chung, Y. K. Lee, I-J. Kim, H. K. Jeong, Synthesis of Nitrogen Doped Graphite Oxide and Its Electrochemical Properties, Curr. Appl Phys. 14 (2014) 82-86.

DOI: 10.1016/j.cap.2013.10.002

Google Scholar

[100] O. S. Burheim, M. Aslan, J. S. Atchison, V. Presser, Thermal Conductivity and Temperature Profiles in Carbon Electrodes for Supercapacitors, J. Power Sources 246 (2014) 160-166.

DOI: 10.1016/j.jpowsour.2013.06.164

Google Scholar

[101] Y. N. Sudhakar, M. Selvakumar, D. K. Bhat, Tubular Array, Dielectric, Conductivity and Electrochemical Properties of Biodegradable Gel Polymer Electrolyte, Mater. Sci. Eng., B 180 (2014) 12-19.

DOI: 10.1016/j.mseb.2013.10.013

Google Scholar

[102] F. Liu, G. Han, Y. Chang, D. Fu, Y. Li, M. Li, Fabrication of Carbon Nanotubes/Polypyrrole/Carbon Nanotubes/Melamine Foam for Supercapacitor, J. Appl. Polym. Sci. (2014) DOI: 10. 1002/APP. 39779.

DOI: 10.1002/app.39779

Google Scholar

[103] A. Kumar, R. K. Singh, H. K. Singh, P. Srivastava, Enhanced Capacitance and Stability of p-toluenesulfonate Doped Polypyrrole/Carbon Composite for Electrode Application in Electrochemical Capacitors, J. Power Sources 246 (2014) 800-807.

DOI: 10.1016/j.jpowsour.2013.07.121

Google Scholar

[104] H. Zhang, L. Hu, J. Tu, S. Jiao, Electrochemically Assembling of Polythiophene Film in Ionic Liquids (ILs) Microemulsions and its Application in an Electrochemical Capacitor, Electrochim. Acta 120 (2014) 122-127.

DOI: 10.1016/j.electacta.2013.12.091

Google Scholar

[105] Y. Song, J-L. Xu, X-X. Liu, Electrochemical Anchoring of Dual Doping Polypyrrole on Graphene Sheets Partially Exfoliated from Graphite Foil for High-Performance Supercapacitor Electrode, J. Power Sources 249 (2014) 48-58.

DOI: 10.1016/j.jpowsour.2013.10.102

Google Scholar

[106] C. H. Kim, B-H. Kim, Effects of Thermal Treatment on the Structural and Capacitive Properties of Polyphenylsilane-Derived Porous Carbon Nanofibers, Electrochim. Acta 117 (2014) 26-33.

DOI: 10.1016/j.electacta.2013.11.082

Google Scholar

[107] C. R. Dennison, M. Beidaghi, K. B. Hatzell, J. W. Campos, Y. Gogotsi, E.C. Kumbur, Effects of Flow Cell Design on Charge Percolation and Storage in the Carbon Slurry Electrodes of Electrochemical Flow Capacitors, J. Power Sources 247 (2014).

DOI: 10.1016/j.jpowsour.2013.08.101

Google Scholar

[108] O. Inganäs, S. Admassie, 25th Anniversary Article: Organic Photovoltaic Modules and Biopolymer Supercapacitors for Supply of Renewable Electricity: A Perspective from Africa, Adv. Mater. 26 (2014) 830-848.

DOI: 10.1002/adma.201302524

Google Scholar

[109] S. S. Shinde, G. S. Gund, D. P. Dubal, S. B. Jambure, C. D. Lokhande, Morphological Modulation of Polypyrrole Thin Films through Oxidizing Agents and Their Concurrent Effect on Supercapacitor Performance, Electrochim. Acta 119 (2014) 1-10.

DOI: 10.1016/j.electacta.2013.10.174

Google Scholar

[110] M. Sun, G. Wang, X. Li, C. Li, Irradiation Preparation of Reduced Graphene Oxide/Carbon Nanotube Composites for High-Performance Supercapacitors, J. Power Sources 245 (2014) 436-444.

DOI: 10.1016/j.jpowsour.2013.06.145

Google Scholar

[111] Y. G. Ko, E. S. Lee, D. H. Shin, Influence of Voltage Waveform on Anodic Film of AZ91 Mg Alloy via Plasma Electrolytic Oxidation: Microstructural Characteristics and Electrochemical Responses, J. Alloys Compd. 586 (2014) S357-S361.

DOI: 10.1016/j.jallcom.2013.03.015

Google Scholar

[112] Y. Xu, I. Hennig, D. Freyberg, A. J. Strudwick, M. G. Schwab, T. Weitz, K. C-P. Cha, Inkjet-Printed Energy Storage Device using Graphene/Polyaniline Inks, J. Power Sources 248 (2014) 483–488.

DOI: 10.1016/j.jpowsour.2013.09.096

Google Scholar

[113] M. Oschatz, L. Borcharqdt, K. Pinkert, S. Thieme, M.R. Lohe, C. Hoffmann, M. Benusch, F. M. Wisser, C. Ziegler, L. Giebeler, M. H. Rümmeli, J. Eckert, A. Eychmüller, S. Kaskel, Hierarchical Carbide-Derived Carbon Foams with Advanced Mesostructure as a Versatile Electrochemical Energy Storage Material, Advanced Energy Materials 4 (2014).

DOI: 10.1002/aenm.201300645

Google Scholar

[114] Y. S. Yun, M. E. Lee, M. J. Joo, H-J. Jin, High-Performance Supercapacitors based on Freestanding Carbon-based Composite Paper Electrodes, J. Power Sources 246 (2014) 540-547.

DOI: 10.1016/j.jpowsour.2013.08.011

Google Scholar

[115] K. Wasinski, M. Walkowiak, G. Lota, Humic Acids as Pseudocapacitive Electrolyte Additive for Electrochemical Double Layer Capacitors, J. Power Sources 255 (2014) 230-234.

DOI: 10.1016/j.jpowsour.2013.12.140

Google Scholar

[116] G. Wang, Runfen Liang, Lixia Liu, Benhe Zhong, Improving the Specific Capacitance of Carbon Nanotubes-based Supercapacitors by Combining Introducing Functional Groups on Carbon Nanotubes with using Redox-Active Electrolyte, Electrochim. Acta115 (2014).

DOI: 10.1016/j.electacta.2013.10.165

Google Scholar

[117] T. Lindfors, R-M. Latonen, Improved Charging/Discharging Behavior of Electropolymerized Nanostructured Composite Films of Polyaniline and Electrochemically Reduced Graphene Oxide, Carbon 69 (2014) 122-131.

DOI: 10.1016/j.carbon.2013.11.074

Google Scholar

[118] C. Lai, Z. Zhou, L. Zhang, X. Wang, Q. Zhou, Y. Wang, X-F. Wu, Z. Zhu, H. Fong, Y. Zhao, Free-Standing and Mechanically Flexible Mats Consisting of Electrospun Carbon Nanofibers Made from a Natural Product of Alkali Lignin as Binder-Free Electrodes for High-Performance Supercapacitors, J. Power Sources 247 (2014).

DOI: 10.1016/j.jpowsour.2013.08.082

Google Scholar

[119] X. Zang, P. Li, Q. Chen, K. Wang, J. Wei, D. Wu, H. Zhu, Evaluation of Layer-by-Layer Graphene Structures as Supercapacitor Electrode Materials, J. Appl. Phys. 115 (2014) 024305.

DOI: 10.1063/1.4861629

Google Scholar

[120] Y. S. Lim, Y. P. Tan, H. N. Lim, N. M. Huang, W. T. Tan, M. A. Yarmo, C-Y. Yin, Potentiostatically Deposited Polypyrrole/Graphene Decorated Nano-Manganese Oxide Ternary Film for Supercapacitors, Ceram. Int. 40 (2014) 3855-3864.

DOI: 10.1016/j.ceramint.2013.08.026

Google Scholar

[121] W. Feng, Q. Zhang, Y. Li, Y. Feng, Preparation of Sulfonated Graphene/Polyaniline Composites in Neutral Solution for High-Performance Supercapacitors, J. Solid State Electrochem. 18 (2014) 1127-1135.

DOI: 10.1007/s10008-013-2369-8

Google Scholar

[122] M. R. Arcila-Velez, M. E. Roberts, Redox Solute Doped Polypyrrole for High-Charge Capacity Polymer Electrodes, Chem. Mater. 26 (2014) 1601-1607.

DOI: 10.1021/cm403630h

Google Scholar

[123] A. Bello, M. Fabiane, D. Dodoo-Arhin, K.I. Ozoemena, N. Manyala, Silver Nanoparticles Decorated on a Three-Dimensional Graphene Scaffold for Electrochemical Applications, J. Phys. Chem. Solids 75 (2014) 109-114.

DOI: 10.1016/j.jpcs.2013.09.006

Google Scholar

[124] X. Zhang, Z. Lin, B. Chen, W. Zhang, S. Sharma, W. Gu, Y. Deng, Solid-State Flexible Polyaniline/Silver Cellulose Nanofibrils Aerogel Supercapacitors, J. Power Sources 246 (2014) 283-289.

DOI: 10.1016/j.jpowsour.2013.07.080

Google Scholar

[125] H. Feng, B. Wang, L. Tan, N. Chen, N. Wang, B. Chen, Polypyrrole/Hexadecylpyridinium Chloride-Modified Graphite Oxide Composites: Fabrication, Characterization, and Application in Supercapacitors, J. Power Sources 246 (2014) 621-628.

DOI: 10.1016/j.jpowsour.2013.08.002

Google Scholar

[126] H. Heli, H. Yadegari, Poly(ortho-aminophenol)/Graphene Nanocomposite as an Efficient Supercapacitor Electrode, J. Electroanal. Chem. 713 (2014) 103-111.

DOI: 10.1016/j.jelechem.2013.12.010

Google Scholar

[127] M. A. Bavio, G. G. Acosta, T. Kessler, Polyaniline and Polyaniline-Carbon Black Nanostructures as Electrochemical Capacitor Electrode Materials, Int. J. Hydrogen Energy 39 (2014) 8582-8589.

DOI: 10.1016/j.ijhydene.2014.01.018

Google Scholar

[128] M. Ates, N. Eren, I. Osken, S. Baslilar, T. Ozturk, Poly(2, 6-di(thiophene-2-yl)-3, 5bis(4-(thiophene-2-yl)phenyl)dithieno [3, 2-b; 2', 3' d]thiophene)/Carbon Nanotube Composite for Capacitor Applications, J. Appl. Polym. Sci. (2014) 40061.

DOI: 10.1002/app.40061

Google Scholar

[129] S. Grover, S. Shekhar, R. K. Sharma, G. Singh, Multiwalled Carbon Nanotube Supported Polypyrrole Manganese Oxide Composite Supercapacitor Electrode: Role of Manganese Oxide Dispersion in Performance Evolution, Electrochim. Acta 116 (2014).

DOI: 10.1016/j.electacta.2013.10.173

Google Scholar

[130] Y. J. Oh, J. J. Yoo, Y. II Kim, J. K. Yoon, H. N. Yoon, J-H. Kim, S. B. Park, Oxygen Functional Groups and Electrochemical Capacitive Behavior of Incompletely Reduced Graphene Oxides as a Thin Film Electrode of Supercapacitor, Electrochim. Acta 116 (2014).

DOI: 10.1016/j.electacta.2013.11.040

Google Scholar

[131] Y. Chang, G. Han, D. Fu, F. Liu, M. Li, Y. Li, C. Liu, Paper-Like N-Doped Graphene Films Prepared by Hydroxylamine Diffusion Induced Assembly and Their Ultrahigh-Rate Capacitive Properties, Electrochim. Acta 115 (2014) 461-470.

DOI: 10.1016/j.electacta.2013.10.203

Google Scholar

[132] C. Oueiny, S. Berlioz, F-X. Perrin, Carbon Nanotube–Polyaniline Composites, Prog. Polym. Sci. 39 (2014) 707-748.

DOI: 10.1016/j.progpolymsci.2013.08.009

Google Scholar

[133] J. W. Graydon, M. Panjehshahi, D. W. Kirk, Charge Redistribution and Ionic Mobility in the Micropores of Supercapacitors, J. Power Sources 245 (2014) 822-829.

DOI: 10.1016/j.jpowsour.2013.07.036

Google Scholar

[134] E. Stavrinidou, M. Sessolo, B. Winther-Jensen, S. Sanaur, G. G. Malliaras, A Physical Interpretation of Impedance at Conducting Polymer/Electrolyte Junctions, AIP Advances 4 (2014) 017127.

DOI: 10.1063/1.4863297

Google Scholar

[135] X. Jiang, S. Setodoi, S. Fukumoto, I. Imae, K. Komaguchi, J. Yano, H. Mizota, Y. Harima, An Easy One-Step Electrosynthesis of Graphene/Polyaniline Composites and Electrochemical Capacitor, Carbon 67 (2014) 662-672.

DOI: 10.1016/j.carbon.2013.10.055

Google Scholar

[136] Z. Zhu, Y. Hu, H. Jiang, C. Li, A Three-Dimensional Ordered Mesoporous Carbon/Carbon Nanotubes Nanocomposites for Supercapacitors, J. Power Sources 246 (2014) 402-408.

DOI: 10.1016/j.jpowsour.2013.07.086

Google Scholar

[137] P. Coenen, F. Leemans, G. Mulder, Applying Large Electric Double Layer Capacitor Systems, J. Appl. Electrochem. 44 (2014) 533-542.

DOI: 10.1007/s10800-014-0667-1

Google Scholar

[138] R. Taniki, K. Matsumoto, T. Nohira, R. Hagiwara, All Solid-State Electrochemical Capacitors using N, N-dimethylpyrrolidinium Fluorohydrogenate as Ionic Plastic Crystal Electrolyte, J. Power Sources 245 (2014) 758-763.

DOI: 10.1016/j.jpowsour.2013.07.020

Google Scholar

[139] G. P. Pandey, A. C. Rastogi, C. R. Westgate, All-Solid-State Supercapacitors with poly(3, 4-ethylenedioxythiophene) Coated Carbon Fiber Paper Electrodes and Ionic Liquid Gel Polymer Electrolyte, J. Power Sources 245 (2014) 857-865.

DOI: 10.1016/j.jpowsour.2013.07.017

Google Scholar

[140] C-S. Lim, K.H. Teoh, C-W. Liew, S. Ramesh, Capacitive Behavior Studies on Electrical Double Layer Capacitor using Poly (vinyl alcohol)-Lithium Perchlorate based Polymer Electrolyte Incorporated with TiO2, Mater. Chem. Phys. 143 (2014) 661-667.

DOI: 10.1016/j.matchemphys.2013.09.051

Google Scholar

[141] K. Shimamoto, K. Tadanaga, M. Tatsumisago, All-Solid-State Electrochemical Capacitors using MnO2 Electrode/SiO2 Nafion Electrolyte Composite Prepared by the Sole Gel Process, J. Power Sources 248 (2014) 396–399.

DOI: 10.1016/j.jpowsour.2013.09.105

Google Scholar

[142] Z. Li, T. Chang, G. Yun, J. Guo, B. Yang, 2D Tin Dioxide Nanoplatelets Decorated Graphene with Enhanced Performance Supercapacitor, J. Alloys Compd. 586 (2014) 353-359.

DOI: 10.1016/j.jallcom.2013.10.037

Google Scholar

[143] C. Ramasamy, J. P. del Val, M. Anderson, An Analysis of Ethylene Glycol-Aqueous based Electrolyte System for Supercapacitor Applications, J. Power Sources 248 (2014) 370-377.

DOI: 10.1016/j.jpowsour.2013.09.078

Google Scholar

[144] S. Xie, M. Gan, L. Ma, Z. Li, J. Yan, H. Yin, X. Shen, F. Xu, J. Zheng, J. Zhang, J. Hu, Synthesis of Polyaniline-Titania Nanotube Arrays Hybrid Composite via Self-Assembling and Graft Polymerization for Supercapacitor Application, Electrochim. Acta 120 (2014).

DOI: 10.1016/j.electacta.2013.12.067

Google Scholar

[145] X. Y. Chen, D. H. Xie, Z. J. Zhang, C. Chen, Tetraphenylborate-Derived Hierarchically Porous Carbons as Efficient Electrode Materials for Supercapacitors, J. Power Sources 246 (2014) 531-539.

DOI: 10.1016/j.jpowsour.2013.08.013

Google Scholar

[146] A. Brandt, A. Balducci, Theoretical and Practical Energy Limitations of Organic and Ionic Liquid-Based Electrolytes for High Voltage Electrochemical Double Layer Capacitors, J. Power Sources 250 (2014) 343-351.

DOI: 10.1016/j.jpowsour.2013.10.147

Google Scholar

[147] S. Jiang, T. Shi, Y. Gao, H. Long, S. Xi, Z. Tang, Fabrication of a 3D Micro/Nano Dual-Scale Carbon Array and Its Demonstration as the Microelectrodes for Supercapacitors, Journal of Micromechanics & Microengineering 24 (2014) 045001.

DOI: 10.1088/0960-1317/24/4/045001

Google Scholar

[148] T. Tevi, S. W. S. Birch, S. W. Thomas, A. Takshi, Effect of Triton X-100 on the Double Layer Capacitance and Conductivity of Poly (3, 4-ethylenedioxythiophene): Poly (Styrenesulfonate) (PEDOT: PSS) Films, Synth. Met. 191 (2014) 59-65.

DOI: 10.1016/j.synthmet.2014.02.005

Google Scholar

[149] M. A. Bavio, G. G. Acosta, T. Kessler, Synthesis and characterization of Polyaniline and Polyaniline-Carbon Nanotubes Nanostructures for Electrochemical Supercapacitors, J. Power Sources 245 (2014) 475-481.

DOI: 10.1016/j.jpowsour.2013.06.119

Google Scholar

[150] D. Chen, M-K. Song, S. Cheng, L. Huang, M. Liu, Contribution of Carbon Fiber Paper (CFP) to the Capacitance of a CFP-Supported Manganese Oxide Supercapacitor, J. Power Sources 248 (2014) 1197-1200.

DOI: 10.1016/j.jpowsour.2013.09.068

Google Scholar