p.51
p.59
p.65
p.73
p.94
p.130
p.157
p.173
p.190
Supercritical Carbon Dioxide Brayton Cycles Driven by Solar Thermal Power Tower System
Abstract:
This chapter starts with a background about concentrating solar power systems and thermal energy storage systems and then a detailed literature review about concentrated solar power systems and supercritical Brayton carbon dioxide cycles. Next, a mathematical model was developed and presented which generates and optimizes a heliostat field effectively. This model was developed to demonstrate the optimization of a heliostat field using differential evolution, which is an evolutionary algorithm. The current model illustrates how to employ the developed model and its advantages. The optimization process calculates the optical performance parameters at every step of the optimization considering all the heliostats; thus yields accurate results as discussed in this chapter. On the other hand, complete mathematical model of supercritical CO2 Brayton cycles when integrated with solar thermal power tower system was presented and discussed.
Info:
Periodical:
Pages:
94-129
Citation:
Online since:
July 2015
Authors:
Price:
Сopyright:
© 2015 Trans Tech Publications Ltd. All Rights Reserved
Citation:
* - Corresponding Author
[1] IEA, Technology Roadmap: Concentrating Solar Power, OECD Publishing, (2010).
[2] IRENA, Renewable Power Generation Costs in 2012 : An Overview, Abu Dhabi, United Arab Emirates, (2012).
[3] A. Fernández-García, E. Zarza, L. Valenzuela, M. Pérez, Parabolic-trough solar collectors and their applications, Renew. Sust. Energ. Rev. 14(7) (2010) 1695-1721.
[4] T.M. Pavlović, I.S. Radonjić, D.D. Milosavljević, L.S. Pantić, A review of concentrating solar power plants in the world and their potential use in Serbia, Renew. Sust. Energ. Rev. 16(6) (2012) 3891-3902.
[5] A. Ummadisingu, M.S. Soni, Concentrating solar power – Technology, potential and policy in India, Renew. Sust. Energ. Rev. 15(9) (2011) 5169-5175.
[6] DLR, European concentrated solar thermal road-mapping, 2005. (http: /www. promes. cnrs. fr/uploads/pdfs/ecostar/ECOSTAR. Roadmap. pdf).
[7] Sargent & Lundy LLC Consulting Group, Assessment of parabolic trough and power tower solar technology cost and performance forecasts, 2003 (NREL/SR-550-34440). (http: /www. nrel. gov/docs/fy04osti/34440. pdf).
DOI: 10.2172/15005520
[8] A. Liqreina, L. Qoaider, Dry cooling of concentrating solar power (CSP) plants, an economic competitive option for the desert regions of the MENA region, Sol. Energy 103 (2014) 417-424.
[9] J. Li, Scaling up concentrating solar thermal technology in China, Renew. Sust. Energ. Rev. 13(8) (2009) 2051-(2060).
[10] R. Mahia, R. de Arce, E. Medina, Assessing the future of a CSP industry in Morocco, Energ. Policy 69 (2014) 586-597.
[11] Squire Sanders, The future for renewable energy in the MENA region.
[12] S.A. Kalogirou, Solar thermal collectors and applications, Prog. Energ. Combust. Sci. 30(3) (2004) 231-295.
[13] IEA, Technology Roadmap Energy storage, (2014).
[14] IRENA, Thermal Energy Storage Technology Brief, (2013).
[15] O. Behar, A. Khellaf, K. Mohammedi, A review of studies on central receiver solar thermal power plants, Renew. Sust. Energ. Rev. 23 (2013) 12-39.
[16] M. Kulhanek, V. Dostal, Supercritical carbon dioxide cycles thermodynamic analysis and comparison, In Supercritical CO2 Power Cycle Symposium, Boulder, CO, May 2011 (pp.24-25).
[17] C.K. Ho, B.D. Iverson, Review of high-temperature central receiver designs for concentrating solar power, Renew. Sust. Energ. Rev. 29 (2014) 835-846.
[18] M. Persichilli, A. Kacludis, E. Zdankiewicz, T. Held, Supercritical CO2 Power Cycle Developments and Commercialization: Why sCO2 can Displace Steam Steam, 2012, pp.19-21.
[19] M. Chiesi, L. Vanzolini, E. Franchi Scarselli, R. Guerrieri, Accurate optical model for design and analysis of solar fields based on heterogeneous multicore systems, Renew. Energ. 55 (2013) 241-251.
[20] P. Garcia, A. Ferriere, J. -J. Bezian, Codes for solar flux calculation dedicated to central receiver system applications: A comparative review, Sol. Energy 82(3) (2008) 189-197.
[21] M. Romero, A. Steinfeld, Concentrating solar thermal power and thermochemical fuels, Energ. Environ. Sci. 5(11) (2012) 9234.
DOI: 10.1039/c2ee21275g
[22] M. Renzi, C.M. Bartolini, M. Santolini, A. Arteconi, Efficiency assessment for a small heliostat solar concentration plant, Int. J. Energ. Res. 39(2) (2015) 265-278.
DOI: 10.1002/er.3238
[23] B.F. Ali, Theoretical study of main factors affecting the heliostat field design of tower power plant, Energ. Convers. Manage. 30(2) (1990) 101-106.
[24] F.W. Lipps, L.L. Vant-Hull, A cellwise method for the optimization of large central receiver systems, Sol. Energy 20(6) (1978) 505-516.
[25] F.W. Lipps, L.L. Vant-Hull, Shading and blocking geometry for a solar tower concentrator with rectangular mirrors, ASME Pap., p.74–WA/Sol–11, (1974).
[26] F.W. Lipps, Theory of cellwise optimization fo solar central receivers, Albuquerque, SAND85-817, (1985).
[27] F.M.F. Siala, M.E. Elayeb, Mathematical formulation of a graphical method for a no-blocking heliostat field layout, Renew. Energ. 23(1) (2001) 77-92.
[28] P. Schwarzbözl, R. Pitz-Paal, M. Schmitz, Visual HFLCAL—A Software Tool for Layout and Optimisation of Heliostat Fields, SolarPACES, SolarPACES, Berlin, Germany, (2009) pp.15-18.
[29] M. Schmitz, P. Schwarzbözl, R. Buck, R. Pitz-Paal, Assessment of the potential improvement due to multiple apertures in central receiver systems with secondary concentrators, " Sol. Energy 80(1) (2006) 111-120.
[30] R. Pitz-Paal, N.B. Botero, A. Steinfeld, Heliostat field layout optimization for high-temperature solar thermochemical processing, Sol. Energy 85(2) (2011) 334-343.
[31] C.J. Noone, M. Torrilhon, A. Mitsos, Heliostat field optimization: A new computationally efficient model and biomimetic layout, Sol. Energy 86(2) (2012) 792-803.
[32] S. M. Besarati, D. Yogi Goswami, A computationally efficient method for the design of the heliostat field for solar power tower plant, Renew. Energ. 69 (2014) 226-232.
[33] G. Sassi, Some notes on shadow and blockage effects, Sol. Energy 31(3) (1983) 331-333.
[34] X. Wei, Z. Lu, Z. Wang, W. Yu, H. Zhang, Z. Yao, A new method for the design of the heliostat field layout for solar tower power plant, Renew. Energ. 35(9) (2010) 1970-(1975).
[35] X. Wei, Z. Lu, W. Yu, Z. Wang, A new code for the design and analysis of the heliostat field layout for power tower system, Sol. Energy 84(4) (2010) 685-690.
[36] W. Huang, Q. Xu, Development of an analytical method and its quick algorithm to calculate the solar energy collected by a heliostat field in a year, Energ. Convers. Manage. 83 (2014) 110-118.
[37] M. Sánchez, M. Romero, Methodology for generation of heliostat field layout in central receiver systems based on yearly normalized energy surfaces, Sol. Energy 80(7) (2006) 861-874.
[38] W. Huang, L. Li, Y. Li, Z. Han, Development and evaluation of several models for precise and fast calculations of shading and blocking in heliostats field, Sol. Energy 95 (2013) 255-264.
[39] W. Huang, H. Li, L. Li, P. Hu, Z. Chen, Gauss–Legendre integration of an analytical function to calculate the optical efficiency of a heliostat, Sol. Energy 92 (2013) 7-14.
[40] F.J. Collado, Preliminary design of surrounding heliostat fields, Renew. Energ. 34(5) (2009) 1359-1363.
[41] F.J. Collado, J. Guallar, Campo: Generation of regular heliostat fields, Renew. Energ. 46 (2012) 49-59.
[42] F.J. Collado, J. Guallar, A review of optimized design layouts for solar power tower plants with campo code, Renew. Sust. Energ. Rev. 20 (2013) 142-154.
[43] E. Leonardi, B. D'Aguanno, CRS4-2: A numerical code for the calculation of the solar power collected in a central receiver system, Energy 36(8) (2011) 4828-4837.
[44] S. Benammar, A. Khellaf, K. Mohammedi, Contribution to the modeling and simulation of solar power tower plants using energy analysis, Energ. Convers. Manage. 78 (2014) 923-930.
[45] A. Kribus, R. Zaibel, D. Carey, A. Segal, J. Karni, A solar-driven combined cycle power plant, Sol. Energy 62(2) (1998) 121-129.
[46] J. Spelling, D. Favrat, A. Martin, G. Augsburger, Thermoeconomic optimization of a combined-cycle solar tower power plant, Energy 41(1) (2011) 1-8.
[47] C. Xu, Z. Wang, X. Li, F. Sun, Energy and exergy analysis of solar power tower plants, Appl. Therm. Eng. 31(17-18) (2011) 3904-3913.
[48] V.S. Reddy, S.C. Kaushik, S.K. Tyagi, Exergetic analysis and economic evaluation of central tower receiver solar thermal power plant, Int. J. Energ. Res. 38(10) (2014) 1288-1303.
DOI: 10.1002/er.3138
[49] S.K. Agrawal, R. Kumar, A. Khaliq, First and second law investigations of a new solar-assisted thermodynamic cycle for triple effect refrigeration, Int. J. Energ. Res. 38(2) (2014) 162-173.
DOI: 10.1002/er.3015
[50] E.J. Sheu, A. Mitsos, Optimization of a hybrid solar-fossil fuel plant: Solar steam reforming of methane in a combined cycle, Energy 51 (2013) 193-202.
[51] Z. Yao, Z. Wang, Z. Lu, X. Wei, Modeling and simulation of the pioneer 1MW solar thermal central receiver system in China, Renew. Energ. 34(11) (2009) 2437-2446.
[52] Q. Yu, Z. Wang, E. Xu, Analysis and improvement of solar flux distribution inside a cavity receiver based on multi-focal points of heliostat field, Appl. Energy 136 (2014) 417-430.
[53] A.L. Avila-Marin, J. Fernandez-Reche, F.M. Tellez, Evaluation of the potential of central receiver solar power plants: Configuration, optimization and trends, Appl. Energ. 112 (2013) 274-288.
[54] S. Peng, H. Hong, Y. Wang, Z. Wang, H. Jin, Off-design thermodynamic performances on typical days of a 330MW solar aided coal-fired power plant in China, Appl. Energ. 130 (2014) 500-509.
[55] Y. Le Moullec, Conceptual study of a high efficiency coal-fired power plant with CO2 capture using a supercritical CO2 Brayton cycle, Energy 49 (2013) 32-46.
[56] X. -D. Niu, H. Yamaguchi, X. -R. Zhang, Y. Iwamoto, N. Hashitani, Experimental study of heat transfer characteristics of supercritical CO2 fluid in collectors of solar Rankine cycle system, " Appl. Therm. Eng. 31(6-7) (2011) 1279-1285.
[57] X.R. Zhang, H. Yamaguchi, D. Uneno, K. Fujima, M. Enomoto, N. Sawada, Analysis of a novel solar energy-powered Rankine cycle for combined power and heat generation using supercritical carbon dioxide, Renew. Energ. 31(12) (2006) 1839-1854.
[58] H. Yamaguchi, X.R. Zhang, K. Fujima, M. Enomoto, N. Sawada, Solar energy powered Rankine cycle using supercritical CO2, Appl. Therm. Eng. 26(17-18) (2006) 2345-2354.
[59] X. -R. Zhang, H. Yamaguchi, An experimental study on evacuated tube solar collector using supercritical CO2, Appl. Therm. Eng. 28(10) (2008) 1225-1233.
[60] X. -D. Niu, H. Yamaguchi, Y. Iwamoto, X. -R. Zhang, Optimal arrangement of the solar collectors of a supercritical CO2-based solar Rankine cycle system, Appl. Therm. Eng. 50(1) (2013) 505-510.
[61] X. -R. Zhang, H. Yamaguchi, D. Uneno, Experimental study on the performance of solar Rankine system using supercritical CO2, Renew. Energ. 32(15) (2007) 2617-2628.
[62] S. Wright, A. Conboy, E. Parma, T. Lewis, G. Rochau, A. Suo-Anttila, Summary of the Sandia supercritical CO2 development program, Proceedings of the Supercritical CO2 Power Cycle Symposium 2011, May 24-25, Boulder, Colorado, USA, (2011).
DOI: 10.2172/1013226
[63] B.D. Iverson, T.M. Conboy, J.J. Pasch, A.M. Kruizenga, Supercritical CO2 Brayton cycles for solar-thermal energy, Appl. Energ. 111 (2013) 957-970.
[64] R. Singh, S.A. Miller, A.S. Rowlands, P.A. Jacobs, Dynamic characteristics of a direct-heated supercritical carbon-dioxide Brayton cycle in a solar thermal power plant, Energy 50 (2013) 194-204.
[65] R. Singh, A.S. Rowlands, S.A. Miller, Effects of relative volume-ratios on dynamic performance of a direct-heated supercritical carbon-dioxide closed Brayton cycle in a solar-thermal power plant, Energy 55 (2013) 1025-1032.
[66] R. Singh, M.P. Kearney, C. Manzie, Extremum-seeking control of a supercritical carbon-dioxide closed Brayton cycle in a direct-heated solar thermal power plant, Energy 60 (2013) 380-387.
[67] D.J. Chapman, D.A. Arias, An Assessment of the Supercritical Carbon Dioxide Cycle for Use in a Solar Parabolic Trough Power Plant, Proceedings of SCCO2 Power Cycle Symposium 2009, April 29-30, Troy, NY, USA, (2009).
[68] C. Turchi, Supercritical CO2 for application in concentrating solar power systems, Proceedings of SCCO2 Power Cycle Symposium 2009, April 29-30, Troy, NY, USA, (2009).
[69] Z. Ma, C.S. Turchi, Advanced Supercritical Carbon Dioxide Power Cycle Configurations for Use in Concentrating Solar Power Systems, Proceedings of the Supercritical CO2 Power Cycle Symposium 2011, May 24-25, Boulder, Colorado, USA, (2011).
DOI: 10.1115/gt2012-68932
[70] P. Garg, P. Kumar, K. Srinivasan, Supercritical carbon dioxide Brayton cycle for concentrated solar power, J. Supercrit. Fluid. 76 (2013) 54-60.
[71] R. Chacartegui, J.M. Muñoz de Escalona, D. Sánchez, B. Monje, T. Sánchez, Alternative cycles based on carbon dioxide for central receiver solar power plants, Appl. Therm. Eng. 31(5) (2011) 872-879.
[72] M. Liu, M. Belusko, N.H. Steven Tay, F. Bruno, Impact of the heat transfer fluid in a flat plate phase change thermal storage unit for concentrated solar tower plants, Sol. Energy 101 (2014) 220-231.
[73] A. Gil, M. Medrano, I. Martorell, State of the art on high temperature thermal energy storage for power generation. Part 1—Concepts, materials and modellization, Renew. Sust. Energ. Rev. 14(1) (2010) 31-55.
[74] M. Medrano, A. Gil, I. Martorell, State of the art on high-temperature thermal energy storage for power generation. Part 2—Case studies, Renew. Sust. Energ. Rev. 14(1) (2010) 56-72.
[75] S. Kuravi, J. Trahan, D.Y. Goswami, M.M. Rahman, E.K. Stefanakos, Thermal energy storage technologies and systems for concentrating solar power plants, Prog. Energ. Combust. Sci. 39(4) (2013) 285-319.
[76] Y. Tian, C.Y. Zhao, A review of solar collectors and thermal energy storage in solar thermal applications, Appl. Energ. 104 (2013) 538-55.
[77] F. Zaversky, J. García-Barberena, M. Sánchez, D. Astrain, Transient molten salt two-tank thermal storage modeling for CSP performance simulations, Sol. Energy 93 (2013) 294-311.
[78] Z. Yang, S.V. Garimella, Thermal analysis of solar thermal energy storage in a molten-salt thermocline, Sol. Energy, 84(6) (2010) 974-985.
[79] Z. Yang, S.V. Garimella, Cyclic operation of molten-salt thermal energy storage in thermoclines for solar power plants, Appl. Energ. 103 (2013) 256-265.
[80] A. Rovira, M.J. Montes, M. Valdes, J. M. Martínez-Val, Energy management in solar thermal power plants with double thermal storage system and subdivided solar field, Appl. Energ. 88(11) (2011) 4055-4066.
[81] K.M. Powell, T.F. Edgar, Modeling and control of a solar thermal power plant with thermal energy storage, Chem. Eng. Sci. 71 (2012) 138-145.
[82] L. Heller, P. Gauché, Modeling of the rock bed thermal energy storage system of a combined cycle solar thermal power plant in South Africa, Sol. Energy 93 (2013) 345-356.
[83] S.J. Wagner, E.S. Rubin, Economic implications of thermal energy storage for concentrated solar thermal power, Renew. Energ. 61 (2012) 81-95.
[84] J.A. Duffie, W.A. Beckman, Solar Engineering of Thermal Processes, John Wiley & Sons, Inc., Hoboken, NJ, USA, (2013).
[85] J.E. Pacheco, H.E. Reilly, G.J. Kolb, C.E. Tyner, Summary of the Solar Two, test and evaluation program, SAND 2000-0372C, (2000).
[86] P.L. Leary, J.D. Hankins, User's guide for MIRVAL: a computer code for comparing designs of heliostat-receiver optics for central receiver solar power plants, SAND-77-8280, (1979).
DOI: 10.2172/6371450
[87] F. Collado, J. Guallar, Design of solar tower Plants heliostat by heliostat: the blocking Factor, SolarPACES, Berlin, Germany, pp.15-18, (2009).
DOI: 10.1063/1.4984351
[88] F. Collado, Design of solar tower plants heliostat by heliostat: the shadowing and blocking factor, SolarPACES, Granada, Spain, p.20–23, (2011).
[89] M. Guo, Z. Wang, On the analysis of an elliptical Gaussian flux image and its equivalent circular Gaussian flux images, Sol. Energy 85 (2011) 1144-1163.
[90] M.A. Abido, N.A. Al-Ali, Multi-objective differential evolution for optimal power flow, 2009 International Conference on Power Engineering, Energy and Electrical Drives, IEEE, pp.101-106, (2009).
[91] K.V. Price, R.M. Storn, J.A. Lampinen, Differential Evolution: A Practical Approach to Global Optimization, Springer, (2005).
[92] R. Storn, K. Price, Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces, J. Global Optim. 11(4) (1997) 341-359.
[93] J. Vesterstrom, R. Thomsen, A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems, Proceedings of the 2004 Congress on Evolutionary Computation, (2004).
[94] S. Das, P.N. Suganthan, Differential Evolution: A Survey of the State-of-the-Art, IEEE T. Evolut. Comput. 15(1) (2011) 4-31.
[95] F.S. Al-Ismail, M.A. Abido, The impact of STATCOM based stabilizers on Power System Stability, using intelligent computational optimization approach, 2011 IEEE PES Innovative Smart Grid Technologies, IEEE, p.1–13, (2011).
[96] S.A. Klein, Calculation of monthly average insolation on tilted surfaces, Sol. Energy 19(4) (1977) 325-329.
[97] A. Segal, M. Epstein, Comparative performances of `tower-top' and `tower-reflector' central solar receviers, Sol. Energy, 65(4) (1999) 207-226.
[98] Y.A. Cengel, Heat and Mass Transfer - A Practical Approach, McGraw-Hill, New York, USA, (2006).