Supercritical Carbon Dioxide Brayton Cycles Driven by Solar Thermal Power Tower System

Article Preview

Abstract:

This chapter starts with a background about concentrating solar power systems and thermal energy storage systems and then a detailed literature review about concentrated solar power systems and supercritical Brayton carbon dioxide cycles. Next, a mathematical model was developed and presented which generates and optimizes a heliostat field effectively. This model was developed to demonstrate the optimization of a heliostat field using differential evolution, which is an evolutionary algorithm. The current model illustrates how to employ the developed model and its advantages. The optimization process calculates the optical performance parameters at every step of the optimization considering all the heliostats; thus yields accurate results as discussed in this chapter. On the other hand, complete mathematical model of supercritical CO2 Brayton cycles when integrated with solar thermal power tower system was presented and discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

94-129

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] IEA, Technology Roadmap: Concentrating Solar Power, OECD Publishing, (2010).

Google Scholar

[2] IRENA, Renewable Power Generation Costs in 2012 : An Overview, Abu Dhabi, United Arab Emirates, (2012).

Google Scholar

[3] A. Fernández-García, E. Zarza, L. Valenzuela, M. Pérez, Parabolic-trough solar collectors and their applications, Renew. Sust. Energ. Rev. 14(7) (2010) 1695-1721.

DOI: 10.1016/j.rser.2010.03.012

Google Scholar

[4] T.M. Pavlović, I.S. Radonjić, D.D. Milosavljević, L.S. Pantić, A review of concentrating solar power plants in the world and their potential use in Serbia, Renew. Sust. Energ. Rev. 16(6) (2012) 3891-3902.

DOI: 10.1016/j.rser.2012.03.042

Google Scholar

[5] A. Ummadisingu, M.S. Soni, Concentrating solar power – Technology, potential and policy in India, Renew. Sust. Energ. Rev. 15(9) (2011) 5169-5175.

DOI: 10.1016/j.rser.2011.07.040

Google Scholar

[6] DLR, European concentrated solar thermal road-mapping, 2005. (http: /www. promes. cnrs. fr/uploads/pdfs/ecostar/ECOSTAR. Roadmap. pdf).

Google Scholar

[7] Sargent & Lundy LLC Consulting Group, Assessment of parabolic trough and power tower solar technology cost and performance forecasts, 2003 (NREL/SR-550-34440). (http: /www. nrel. gov/docs/fy04osti/34440. pdf).

DOI: 10.2172/15005520

Google Scholar

[8] A. Liqreina, L. Qoaider, Dry cooling of concentrating solar power (CSP) plants, an economic competitive option for the desert regions of the MENA region, Sol. Energy 103 (2014) 417-424.

DOI: 10.1016/j.solener.2014.02.039

Google Scholar

[9] J. Li, Scaling up concentrating solar thermal technology in China, Renew. Sust. Energ. Rev. 13(8) (2009) 2051-(2060).

Google Scholar

[10] R. Mahia, R. de Arce, E. Medina, Assessing the future of a CSP industry in Morocco, Energ. Policy 69 (2014) 586-597.

DOI: 10.1016/j.enpol.2014.02.024

Google Scholar

[11] Squire Sanders, The future for renewable energy in the MENA region.

Google Scholar

[12] S.A. Kalogirou, Solar thermal collectors and applications, Prog. Energ. Combust. Sci. 30(3) (2004) 231-295.

Google Scholar

[13] IEA, Technology Roadmap Energy storage, (2014).

Google Scholar

[14] IRENA, Thermal Energy Storage Technology Brief, (2013).

Google Scholar

[15] O. Behar, A. Khellaf, K. Mohammedi, A review of studies on central receiver solar thermal power plants, Renew. Sust. Energ. Rev. 23 (2013) 12-39.

DOI: 10.1016/j.rser.2013.02.017

Google Scholar

[16] M. Kulhanek, V. Dostal, Supercritical carbon dioxide cycles thermodynamic analysis and comparison, In Supercritical CO2 Power Cycle Symposium, Boulder, CO, May 2011 (pp.24-25).

Google Scholar

[17] C.K. Ho, B.D. Iverson, Review of high-temperature central receiver designs for concentrating solar power, Renew. Sust. Energ. Rev. 29 (2014) 835-846.

DOI: 10.1016/j.rser.2013.08.099

Google Scholar

[18] M. Persichilli, A. Kacludis, E. Zdankiewicz, T. Held, Supercritical CO2 Power Cycle Developments and Commercialization: Why sCO2 can Displace Steam Steam, 2012, pp.19-21.

Google Scholar

[19] M. Chiesi, L. Vanzolini, E. Franchi Scarselli, R. Guerrieri, Accurate optical model for design and analysis of solar fields based on heterogeneous multicore systems, Renew. Energ. 55 (2013) 241-251.

DOI: 10.1016/j.renene.2012.12.025

Google Scholar

[20] P. Garcia, A. Ferriere, J. -J. Bezian, Codes for solar flux calculation dedicated to central receiver system applications: A comparative review, Sol. Energy 82(3) (2008) 189-197.

DOI: 10.1016/j.solener.2007.08.004

Google Scholar

[21] M. Romero, A. Steinfeld, Concentrating solar thermal power and thermochemical fuels, Energ. Environ. Sci. 5(11) (2012) 9234.

DOI: 10.1039/c2ee21275g

Google Scholar

[22] M. Renzi, C.M. Bartolini, M. Santolini, A. Arteconi, Efficiency assessment for a small heliostat solar concentration plant, Int. J. Energ. Res. 39(2) (2015) 265-278.

DOI: 10.1002/er.3238

Google Scholar

[23] B.F. Ali, Theoretical study of main factors affecting the heliostat field design of tower power plant, Energ. Convers. Manage. 30(2) (1990) 101-106.

DOI: 10.1016/0196-8904(90)90019-u

Google Scholar

[24] F.W. Lipps, L.L. Vant-Hull, A cellwise method for the optimization of large central receiver systems, Sol. Energy 20(6) (1978) 505-516.

DOI: 10.1016/0038-092x(78)90067-1

Google Scholar

[25] F.W. Lipps, L.L. Vant-Hull, Shading and blocking geometry for a solar tower concentrator with rectangular mirrors, ASME Pap., p.74–WA/Sol–11, (1974).

Google Scholar

[26] F.W. Lipps, Theory of cellwise optimization fo solar central receivers, Albuquerque, SAND85-817, (1985).

Google Scholar

[27] F.M.F. Siala, M.E. Elayeb, Mathematical formulation of a graphical method for a no-blocking heliostat field layout, Renew. Energ. 23(1) (2001) 77-92.

DOI: 10.1016/s0960-1481(00)00159-2

Google Scholar

[28] P. Schwarzbözl, R. Pitz-Paal, M. Schmitz, Visual HFLCAL—A Software Tool for Layout and Optimisation of Heliostat Fields, SolarPACES, SolarPACES, Berlin, Germany, (2009) pp.15-18.

Google Scholar

[29] M. Schmitz, P. Schwarzbözl, R. Buck, R. Pitz-Paal, Assessment of the potential improvement due to multiple apertures in central receiver systems with secondary concentrators, " Sol. Energy 80(1) (2006) 111-120.

DOI: 10.1016/j.solener.2005.02.012

Google Scholar

[30] R. Pitz-Paal, N.B. Botero, A. Steinfeld, Heliostat field layout optimization for high-temperature solar thermochemical processing, Sol. Energy 85(2) (2011) 334-343.

DOI: 10.1016/j.solener.2010.11.018

Google Scholar

[31] C.J. Noone, M. Torrilhon, A. Mitsos, Heliostat field optimization: A new computationally efficient model and biomimetic layout, Sol. Energy 86(2) (2012) 792-803.

DOI: 10.1016/j.solener.2011.12.007

Google Scholar

[32] S. M. Besarati, D. Yogi Goswami, A computationally efficient method for the design of the heliostat field for solar power tower plant, Renew. Energ. 69 (2014) 226-232.

DOI: 10.1016/j.renene.2014.03.043

Google Scholar

[33] G. Sassi, Some notes on shadow and blockage effects, Sol. Energy 31(3) (1983) 331-333.

DOI: 10.1016/0038-092x(83)90022-1

Google Scholar

[34] X. Wei, Z. Lu, Z. Wang, W. Yu, H. Zhang, Z. Yao, A new method for the design of the heliostat field layout for solar tower power plant, Renew. Energ. 35(9) (2010) 1970-(1975).

DOI: 10.1016/j.renene.2010.01.026

Google Scholar

[35] X. Wei, Z. Lu, W. Yu, Z. Wang, A new code for the design and analysis of the heliostat field layout for power tower system, Sol. Energy 84(4) (2010) 685-690.

DOI: 10.1016/j.solener.2010.01.020

Google Scholar

[36] W. Huang, Q. Xu, Development of an analytical method and its quick algorithm to calculate the solar energy collected by a heliostat field in a year, Energ. Convers. Manage. 83 (2014) 110-118.

DOI: 10.1016/j.enconman.2014.03.065

Google Scholar

[37] M. Sánchez, M. Romero, Methodology for generation of heliostat field layout in central receiver systems based on yearly normalized energy surfaces, Sol. Energy 80(7) (2006) 861-874.

DOI: 10.1016/j.solener.2005.05.014

Google Scholar

[38] W. Huang, L. Li, Y. Li, Z. Han, Development and evaluation of several models for precise and fast calculations of shading and blocking in heliostats field, Sol. Energy 95 (2013) 255-264.

DOI: 10.1016/j.solener.2013.06.016

Google Scholar

[39] W. Huang, H. Li, L. Li, P. Hu, Z. Chen, Gauss–Legendre integration of an analytical function to calculate the optical efficiency of a heliostat, Sol. Energy 92 (2013) 7-14.

DOI: 10.1016/j.solener.2013.03.001

Google Scholar

[40] F.J. Collado, Preliminary design of surrounding heliostat fields, Renew. Energ. 34(5) (2009) 1359-1363.

DOI: 10.1016/j.renene.2008.09.003

Google Scholar

[41] F.J. Collado, J. Guallar, Campo: Generation of regular heliostat fields, Renew. Energ. 46 (2012) 49-59.

DOI: 10.1016/j.renene.2012.03.011

Google Scholar

[42] F.J. Collado, J. Guallar, A review of optimized design layouts for solar power tower plants with campo code, Renew. Sust. Energ. Rev. 20 (2013) 142-154.

DOI: 10.1016/j.rser.2012.11.076

Google Scholar

[43] E. Leonardi, B. D'Aguanno, CRS4-2: A numerical code for the calculation of the solar power collected in a central receiver system, Energy 36(8) (2011) 4828-4837.

DOI: 10.1016/j.energy.2011.05.017

Google Scholar

[44] S. Benammar, A. Khellaf, K. Mohammedi, Contribution to the modeling and simulation of solar power tower plants using energy analysis, Energ. Convers. Manage. 78 (2014) 923-930.

DOI: 10.1016/j.enconman.2013.08.066

Google Scholar

[45] A. Kribus, R. Zaibel, D. Carey, A. Segal, J. Karni, A solar-driven combined cycle power plant, Sol. Energy 62(2) (1998) 121-129.

DOI: 10.1016/s0038-092x(97)00107-2

Google Scholar

[46] J. Spelling, D. Favrat, A. Martin, G. Augsburger, Thermoeconomic optimization of a combined-cycle solar tower power plant, Energy 41(1) (2011) 1-8.

DOI: 10.1016/j.energy.2011.03.073

Google Scholar

[47] C. Xu, Z. Wang, X. Li, F. Sun, Energy and exergy analysis of solar power tower plants, Appl. Therm. Eng. 31(17-18) (2011) 3904-3913.

DOI: 10.1016/j.applthermaleng.2011.07.038

Google Scholar

[48] V.S. Reddy, S.C. Kaushik, S.K. Tyagi, Exergetic analysis and economic evaluation of central tower receiver solar thermal power plant, Int. J. Energ. Res. 38(10) (2014) 1288-1303.

DOI: 10.1002/er.3138

Google Scholar

[49] S.K. Agrawal, R. Kumar, A. Khaliq, First and second law investigations of a new solar-assisted thermodynamic cycle for triple effect refrigeration, Int. J. Energ. Res. 38(2) (2014) 162-173.

DOI: 10.1002/er.3015

Google Scholar

[50] E.J. Sheu, A. Mitsos, Optimization of a hybrid solar-fossil fuel plant: Solar steam reforming of methane in a combined cycle, Energy 51 (2013) 193-202.

DOI: 10.1016/j.energy.2013.01.027

Google Scholar

[51] Z. Yao, Z. Wang, Z. Lu, X. Wei, Modeling and simulation of the pioneer 1MW solar thermal central receiver system in China, Renew. Energ. 34(11) (2009) 2437-2446.

DOI: 10.1016/j.renene.2009.02.022

Google Scholar

[52] Q. Yu, Z. Wang, E. Xu, Analysis and improvement of solar flux distribution inside a cavity receiver based on multi-focal points of heliostat field, Appl. Energy 136 (2014) 417-430.

DOI: 10.1016/j.apenergy.2014.09.008

Google Scholar

[53] A.L. Avila-Marin, J. Fernandez-Reche, F.M. Tellez, Evaluation of the potential of central receiver solar power plants: Configuration, optimization and trends, Appl. Energ. 112 (2013) 274-288.

DOI: 10.1016/j.apenergy.2013.05.049

Google Scholar

[54] S. Peng, H. Hong, Y. Wang, Z. Wang, H. Jin, Off-design thermodynamic performances on typical days of a 330MW solar aided coal-fired power plant in China, Appl. Energ. 130 (2014) 500-509.

DOI: 10.1016/j.apenergy.2014.01.096

Google Scholar

[55] Y. Le Moullec, Conceptual study of a high efficiency coal-fired power plant with CO2 capture using a supercritical CO2 Brayton cycle, Energy 49 (2013) 32-46.

DOI: 10.1016/j.energy.2012.10.022

Google Scholar

[56] X. -D. Niu, H. Yamaguchi, X. -R. Zhang, Y. Iwamoto, N. Hashitani, Experimental study of heat transfer characteristics of supercritical CO2 fluid in collectors of solar Rankine cycle system, " Appl. Therm. Eng. 31(6-7) (2011) 1279-1285.

DOI: 10.1016/j.applthermaleng.2010.12.034

Google Scholar

[57] X.R. Zhang, H. Yamaguchi, D. Uneno, K. Fujima, M. Enomoto, N. Sawada, Analysis of a novel solar energy-powered Rankine cycle for combined power and heat generation using supercritical carbon dioxide, Renew. Energ. 31(12) (2006) 1839-1854.

DOI: 10.1016/j.renene.2005.09.024

Google Scholar

[58] H. Yamaguchi, X.R. Zhang, K. Fujima, M. Enomoto, N. Sawada, Solar energy powered Rankine cycle using supercritical CO2, Appl. Therm. Eng. 26(17-18) (2006) 2345-2354.

DOI: 10.1016/j.applthermaleng.2006.02.029

Google Scholar

[59] X. -R. Zhang, H. Yamaguchi, An experimental study on evacuated tube solar collector using supercritical CO2, Appl. Therm. Eng. 28(10) (2008) 1225-1233.

DOI: 10.1016/j.applthermaleng.2007.07.013

Google Scholar

[60] X. -D. Niu, H. Yamaguchi, Y. Iwamoto, X. -R. Zhang, Optimal arrangement of the solar collectors of a supercritical CO2-based solar Rankine cycle system, Appl. Therm. Eng. 50(1) (2013) 505-510.

DOI: 10.1016/j.applthermaleng.2012.08.004

Google Scholar

[61] X. -R. Zhang, H. Yamaguchi, D. Uneno, Experimental study on the performance of solar Rankine system using supercritical CO2, Renew. Energ. 32(15) (2007) 2617-2628.

DOI: 10.1016/j.renene.2007.01.003

Google Scholar

[62] S. Wright, A. Conboy, E. Parma, T. Lewis, G. Rochau, A. Suo-Anttila, Summary of the Sandia supercritical CO2 development program, Proceedings of the Supercritical CO2 Power Cycle Symposium 2011, May 24-25, Boulder, Colorado, USA, (2011).

DOI: 10.2172/1013226

Google Scholar

[63] B.D. Iverson, T.M. Conboy, J.J. Pasch, A.M. Kruizenga, Supercritical CO2 Brayton cycles for solar-thermal energy, Appl. Energ. 111 (2013) 957-970.

DOI: 10.1016/j.apenergy.2013.06.020

Google Scholar

[64] R. Singh, S.A. Miller, A.S. Rowlands, P.A. Jacobs, Dynamic characteristics of a direct-heated supercritical carbon-dioxide Brayton cycle in a solar thermal power plant, Energy 50 (2013) 194-204.

DOI: 10.1016/j.energy.2012.11.029

Google Scholar

[65] R. Singh, A.S. Rowlands, S.A. Miller, Effects of relative volume-ratios on dynamic performance of a direct-heated supercritical carbon-dioxide closed Brayton cycle in a solar-thermal power plant, Energy 55 (2013) 1025-1032.

DOI: 10.1016/j.energy.2013.03.049

Google Scholar

[66] R. Singh, M.P. Kearney, C. Manzie, Extremum-seeking control of a supercritical carbon-dioxide closed Brayton cycle in a direct-heated solar thermal power plant, Energy 60 (2013) 380-387.

DOI: 10.1016/j.energy.2013.08.001

Google Scholar

[67] D.J. Chapman, D.A. Arias, An Assessment of the Supercritical Carbon Dioxide Cycle for Use in a Solar Parabolic Trough Power Plant, Proceedings of SCCO2 Power Cycle Symposium 2009, April 29-30, Troy, NY, USA, (2009).

Google Scholar

[68] C. Turchi, Supercritical CO2 for application in concentrating solar power systems, Proceedings of SCCO2 Power Cycle Symposium 2009, April 29-30, Troy, NY, USA, (2009).

Google Scholar

[69] Z. Ma, C.S. Turchi, Advanced Supercritical Carbon Dioxide Power Cycle Configurations for Use in Concentrating Solar Power Systems, Proceedings of the Supercritical CO2 Power Cycle Symposium 2011, May 24-25, Boulder, Colorado, USA, (2011).

DOI: 10.1115/gt2012-68932

Google Scholar

[70] P. Garg, P. Kumar, K. Srinivasan, Supercritical carbon dioxide Brayton cycle for concentrated solar power, J. Supercrit. Fluid. 76 (2013) 54-60.

DOI: 10.1016/j.supflu.2013.01.010

Google Scholar

[71] R. Chacartegui, J.M. Muñoz de Escalona, D. Sánchez, B. Monje, T. Sánchez, Alternative cycles based on carbon dioxide for central receiver solar power plants, Appl. Therm. Eng. 31(5) (2011) 872-879.

DOI: 10.1016/j.applthermaleng.2010.11.008

Google Scholar

[72] M. Liu, M. Belusko, N.H. Steven Tay, F. Bruno, Impact of the heat transfer fluid in a flat plate phase change thermal storage unit for concentrated solar tower plants, Sol. Energy 101 (2014) 220-231.

DOI: 10.1016/j.solener.2013.12.030

Google Scholar

[73] A. Gil, M. Medrano, I. Martorell, State of the art on high temperature thermal energy storage for power generation. Part 1—Concepts, materials and modellization, Renew. Sust. Energ. Rev. 14(1) (2010) 31-55.

DOI: 10.1016/j.rser.2009.07.035

Google Scholar

[74] M. Medrano, A. Gil, I. Martorell, State of the art on high-temperature thermal energy storage for power generation. Part 2—Case studies, Renew. Sust. Energ. Rev. 14(1) (2010) 56-72.

DOI: 10.1016/j.rser.2009.07.036

Google Scholar

[75] S. Kuravi, J. Trahan, D.Y. Goswami, M.M. Rahman, E.K. Stefanakos, Thermal energy storage technologies and systems for concentrating solar power plants, Prog. Energ. Combust. Sci. 39(4) (2013) 285-319.

DOI: 10.1016/j.pecs.2013.02.001

Google Scholar

[76] Y. Tian, C.Y. Zhao, A review of solar collectors and thermal energy storage in solar thermal applications, Appl. Energ. 104 (2013) 538-55.

DOI: 10.1016/j.apenergy.2012.11.051

Google Scholar

[77] F. Zaversky, J. García-Barberena, M. Sánchez, D. Astrain, Transient molten salt two-tank thermal storage modeling for CSP performance simulations, Sol. Energy 93 (2013) 294-311.

DOI: 10.1016/j.solener.2013.02.034

Google Scholar

[78] Z. Yang, S.V. Garimella, Thermal analysis of solar thermal energy storage in a molten-salt thermocline, Sol. Energy, 84(6) (2010) 974-985.

DOI: 10.1016/j.solener.2010.03.007

Google Scholar

[79] Z. Yang, S.V. Garimella, Cyclic operation of molten-salt thermal energy storage in thermoclines for solar power plants, Appl. Energ. 103 (2013) 256-265.

DOI: 10.1016/j.apenergy.2012.09.043

Google Scholar

[80] A. Rovira, M.J. Montes, M. Valdes, J. M. Martínez-Val, Energy management in solar thermal power plants with double thermal storage system and subdivided solar field, Appl. Energ. 88(11) (2011) 4055-4066.

DOI: 10.1016/j.apenergy.2011.04.036

Google Scholar

[81] K.M. Powell, T.F. Edgar, Modeling and control of a solar thermal power plant with thermal energy storage, Chem. Eng. Sci. 71 (2012) 138-145.

DOI: 10.1016/j.ces.2011.12.009

Google Scholar

[82] L. Heller, P. Gauché, Modeling of the rock bed thermal energy storage system of a combined cycle solar thermal power plant in South Africa, Sol. Energy 93 (2013) 345-356.

DOI: 10.1016/j.solener.2013.04.018

Google Scholar

[83] S.J. Wagner, E.S. Rubin, Economic implications of thermal energy storage for concentrated solar thermal power, Renew. Energ. 61 (2012) 81-95.

DOI: 10.1016/j.renene.2012.08.013

Google Scholar

[84] J.A. Duffie, W.A. Beckman, Solar Engineering of Thermal Processes, John Wiley & Sons, Inc., Hoboken, NJ, USA, (2013).

Google Scholar

[85] J.E. Pacheco, H.E. Reilly, G.J. Kolb, C.E. Tyner, Summary of the Solar Two, test and evaluation program, SAND 2000-0372C, (2000).

Google Scholar

[86] P.L. Leary, J.D. Hankins, User's guide for MIRVAL: a computer code for comparing designs of heliostat-receiver optics for central receiver solar power plants, SAND-77-8280, (1979).

DOI: 10.2172/6371450

Google Scholar

[87] F. Collado, J. Guallar, Design of solar tower Plants heliostat by heliostat: the blocking Factor, SolarPACES, Berlin, Germany, pp.15-18, (2009).

DOI: 10.1063/1.4984351

Google Scholar

[88] F. Collado, Design of solar tower plants heliostat by heliostat: the shadowing and blocking factor, SolarPACES, Granada, Spain, p.20–23, (2011).

Google Scholar

[89] M. Guo, Z. Wang, On the analysis of an elliptical Gaussian flux image and its equivalent circular Gaussian flux images, Sol. Energy 85 (2011) 1144-1163.

DOI: 10.1016/j.solener.2011.03.010

Google Scholar

[90] M.A. Abido, N.A. Al-Ali, Multi-objective differential evolution for optimal power flow, 2009 International Conference on Power Engineering, Energy and Electrical Drives, IEEE, pp.101-106, (2009).

DOI: 10.1109/powereng.2009.4915212

Google Scholar

[91] K.V. Price, R.M. Storn, J.A. Lampinen, Differential Evolution: A Practical Approach to Global Optimization, Springer, (2005).

Google Scholar

[92] R. Storn, K. Price, Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces, J. Global Optim. 11(4) (1997) 341-359.

Google Scholar

[93] J. Vesterstrom, R. Thomsen, A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems, Proceedings of the 2004 Congress on Evolutionary Computation, (2004).

DOI: 10.1109/cec.2004.1331139

Google Scholar

[94] S. Das, P.N. Suganthan, Differential Evolution: A Survey of the State-of-the-Art, IEEE T. Evolut. Comput. 15(1) (2011) 4-31.

Google Scholar

[95] F.S. Al-Ismail, M.A. Abido, The impact of STATCOM based stabilizers on Power System Stability, using intelligent computational optimization approach, 2011 IEEE PES Innovative Smart Grid Technologies, IEEE, p.1–13, (2011).

DOI: 10.1109/isgt-asia.2011.6167327

Google Scholar

[96] S.A. Klein, Calculation of monthly average insolation on tilted surfaces, Sol. Energy 19(4) (1977) 325-329.

DOI: 10.1016/0038-092x(77)90001-9

Google Scholar

[97] A. Segal, M. Epstein, Comparative performances of `tower-top' and `tower-reflector' central solar receviers, Sol. Energy, 65(4) (1999) 207-226.

DOI: 10.1016/s0038-092x(98)00138-8

Google Scholar

[98] Y.A. Cengel, Heat and Mass Transfer - A Practical Approach, McGraw-Hill, New York, USA, (2006).

Google Scholar