[1]
R.E.I. Schropp, R. Carius, G. Beaucarne, Amorphous silicon, microcrystalline silicon, and thin-film polycrystalline silicon solar cells, MRS Bull. 32 (2007) 219-224.
DOI: 10.1557/mrs2007.25
Google Scholar
[2]
R. Santbergen, R.J.C. van Zolinge, The absorption factor of crystalline silicon PV cells: A numerical and experimental study, Sol. Energy Mater. Sol. Cell 92 (2007) 432-444.
DOI: 10.1016/j.solmat.2007.10.005
Google Scholar
[3]
C. Strumpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Svrcek, C. del Canizo, I. Tobias, Modifying the solar spectrum to enhance silicon solar cell efficiency - An overview of available materials, Energy Mater. Sol. Cell 91 (2007).
DOI: 10.1016/j.solmat.2006.09.003
Google Scholar
[4]
A. Matsuda, Thin-Film Silicon-Growth Process and Solar Cell Application, Jpn. J. Appl. Phys. 43 (2004) 7909-7920.
DOI: 10.1143/jjap.43.7909
Google Scholar
[5]
J. Mahrholz, S. Shikolenko, B. Szyszka, T. Jung, Deposition of Amorphous Silicon Films by Gas Flow Sputtering (GFS), 24th Europ. Photovol. Sol. Energy Conf. 46 (2009) 3BV. 4 2879-2883.
Google Scholar
[6]
H. Chatham, P. Bhat, A. Benson, C. Matovich, High-efficiency amorphous silicon p-i-n solar cells deposited from disilane at rates up to 2 nm/s using VHF discharges, J. Non-Cryst. Sol. 115 (1989) 201-203.
DOI: 10.1016/0022-3093(89)90404-3
Google Scholar
[7]
Y. Ziegler, V. Daudrix, C. Droz, R. Platz, N. Wyrsch, A. Shah, More stable low gap a-Si: H layers deposited by PE-CVD at moderately high temperature with hydrogen dilution, Sol. Energy Mater. Sol. Cells 66 (2001) 413-419.
DOI: 10.1016/s0927-0248(00)00202-6
Google Scholar
[8]
X. Xu, J. Yang, S. Guha, Hydrogen dilution effects on a-Si: H and a-SiGe: H materials properties and solar cell performance, J. Non-Crys. Solids 198-200 (1996) 1113-1116.
DOI: 10.1016/0022-3093(95)00657-5
Google Scholar
[9]
H. Fujiwara, M. Kondo, Application of Spectroscopic Ellipsometry and Infrared Spectroscopy for the Real-Time Control and Characterization of a-Si: H Growth in a-Si: H/c-Si Heterojunction Solar Cells, Mater. Res. Soc. Symp. Proc. 862 (2005).
DOI: 10.1557/proc-862-a14.1
Google Scholar
[10]
C. Modanese, M.D. Sabatino, A. Soiland, K. Peter, L. Arnberg, Investigation of bulk and solar cell properties of ingots cast from compensated solar grade silicon, Prog. Photovolt: Res. Appl. 19 (2011) 45-53.
DOI: 10.1002/pip.986
Google Scholar
[11]
W. Tu, Y. Chang, C. Yang, D. Yeh, C. Ho, C. Hsueh, S. Lee, Hydrogenated amorphous silicon solar cell on glass substrate patterned by hexagonal nanocylinder array, Appl. Phys. Lett. 97 (2010) 193109-193111.
DOI: 10.1063/1.3515853
Google Scholar
[12]
H. Stiebig, F. Siebke, W. Beyer, C. Beneking, B. Rech, H. Wagner, Interfaces in a-Si: H solar cell structures, Sol. Energy Mater. Sol. Cells 48 (1997) 351-363.
DOI: 10.1016/s0927-0248(97)00147-5
Google Scholar
[13]
R. Biswas, D. Zhou, Improved photon absorption in a-Si: H solar cells using photonic crystal architectures, Mater. Res. Soc. Symp. Proc. 1066 (2008) A14-20.
DOI: 10.1557/proc-1066-a14-04
Google Scholar
[14]
N. Sakikawa, M. Tamao, S. Miyazaki, M. Hirose, Structural inhomogeneity on hydrogenated amorphous silicon related to the photoelectric properties and defect density, Jpn. J. Appl. Phys. 38 (1999) 5768-5771.
DOI: 10.1143/jjap.38.5768
Google Scholar
[15]
L. Li, Y. Li, J. A. A. Selvan, A. E. Delahoy, R. A. Levy, Correlations between structural properties and performance of microcrystalline silicon solar cells fabricated by conventional RF-PECVD, J. Non-Crys. Solids 347 (2004) 106-113.
DOI: 10.1016/j.jnoncrysol.2004.07.082
Google Scholar
[16]
Z. Shen, T. Gotoh, M. Eguchi, N. Yoshida, T. Itoh and S. Nonomura, Study of nano-scale electrical properties of hydrogenated microcrystalline silicon solar cells by conductive atomic force microscope, Jpn. J. Appl. Phys. 46 (2007) 2858-2864.
DOI: 10.1143/jjap.46.2858
Google Scholar
[17]
E. Verveniotis, B. Rezek, E. Sipek, J. Stuchlík, M. Ledinsky, J. Kocka, Impact of AFM-induced nano-pits in a-Si: H films on silicon crystal growth, Nanoscale Res. Lett. 6 (2011) 145-149.
DOI: 10.1186/1556-276x-6-145
Google Scholar
[18]
B. Yan, C. Jiang, Y. Yan, L. Sivec, J. Yang, S. Guha, M.M. Al-Jassim, Effect of hydrogen dilution profiling on the microscopic structure of amorphous and nanocrystalline silicon mixed-phase solar cells, Phys. Status Solidi C 7 (2010) 513-516.
DOI: 10.1002/pssc.200982768
Google Scholar
[19]
C. Hof, N. Wyrsch, A Shah, Influence of electric field distortion and i-layer quality on the collection function of drift-driven a-Si: H solar cells, J. Non-Crys. Solids 266-269 (2000) 1114-1118.
DOI: 10.1016/s0022-3093(99)00913-8
Google Scholar
[20]
J. Herion, K. Szot, S. Barzen, F. Siebke, M. Teske, AFM and STM investigations of hydrogenated amorphous silicon: topography and barrier heights, Fresenius J. Anal. Chem. 358 (1997) 338-340.
DOI: 10.1007/s002160050423
Google Scholar
[21]
E. Vallat-Sauvain, J. Bailat, J. Meier, X. Niquille, U. Kroll, A. Shah, Influence of the substrate's surface morphology and chemical nature on the nucleation and growth of microcrystalline silicon, Thin solid films 485 (2005) 77-81.
DOI: 10.1016/j.tsf.2005.03.017
Google Scholar
[22]
K. Arima, T. Shigetoshi, H. Kakiuchi, M. Morita, Surface photovoltage measurements of intrinsic hydrogenated amorphous Si films on Si wafers on the nanometer scale, Physica B 376-377 (2006) 893-896.
DOI: 10.1016/j.physb.2005.12.223
Google Scholar
[23]
O. Vatel, M. Tanimoto, Kelvin probe force microscopy for potential distribution measurement of semiconductor devices, J. App. Phys. 77 (1995) 2358-2362.
DOI: 10.1063/1.358758
Google Scholar
[24]
C. -S. Jiang, H.R. Moutinho, M.J. Romero, M.M. Al-Jassim, Y.Q. Xu, Q. Wang, Distribution of the electrical potential in hydrogenated amorphous silicon solar cells, Thin Solid Flms 472 (2005) 203- 207.
DOI: 10.1016/j.tsf.2004.07.049
Google Scholar
[25]
F. Liu, M. J. Romero, K. M. Jones, M. M. Al-Jassim, O. Kunz, J. Wong, A.G. Aberle, Solid-phase crystallization of evaporated silicon thin films on glass for photovoltaics: A combined SEM and TEM study, Proc. of SPIE 7409 (2009) 740906-1-740906-8.
DOI: 10.1117/12.823622
Google Scholar
[26]
V.P. Oleshko, B.K. Nayak and M.C. Gupta, High spatial resolution analytical electron microscopic investigation of femtosecond-laser-induced crystallization of a-Si: H films, Micros. Microanal. 12 (2006) 634-635.
DOI: 10.1017/s1431927606066050
Google Scholar
[27]
V.E. Ferry, M.A. Verschuuren, H.B.T. Li, R.E.I. Schropp, H.A. Atwater, A. Polman, Improved red-response in thin film a-Si: H solar cells with soft-imprinted plasmonic back reflectors, Appl. Phys. Lett. 95 (2009) 183503-183505.
DOI: 10.1063/1.3256187
Google Scholar
[28]
F. Liu, M.M. AI-Jassim, D.L. Young, Ultra-high material-quality silicon pillars on glass, IEEE Xplore PVSC 2009 (2010) 002176-002179.
DOI: 10.1109/pvsc.2010.5615865
Google Scholar
[29]
A.R.M. Yusoff, M.N. Syahrul, K. Henkel, High resolution transmission electron microscope studies of aSi: H solar cells, Pramana J. Phys. 68 (2007) 995-999.
DOI: 10.1007/s12043-007-0098-1
Google Scholar
[30]
J.D. Saunderson, M.J. Witcomb, R. Swanepoel, Microstructure and morphology of α-Si : H solar cells grown on metallized flexible substrates, J. Mater. Sci. 36 (2001) 1563-1568.
Google Scholar
[31]
I.A.S. Carvalho, R.L. Ribeiro, E. Muniz, E. Borba, J.R.T. Branco, A ftir, Raman and SEM-EBSD-EDS microstructure characterization of plasma thermally sprayed silicon sheet for low cost solar cells substrate, IEEE Xplore 978 (2009) 001461-001466.
DOI: 10.1109/pvsc.2009.5411325
Google Scholar
[32]
D. Chandan, Effects of substrate temperature on structural properties of undoped silicon thin films, J. Appl. Phys. 91 (2002) 9401-9407.
DOI: 10.1063/1.1474611
Google Scholar
[33]
S. Lee, J.H. Shim, D.J. You, S. Ahn, H Lee, The novel usage of spectroscopic ellipsometry for the development of amorphous Si solar cells, Sol. Energy Mat. Sol. Cells 95 (2011) 142-145.
DOI: 10.1016/j.solmat.2010.04.054
Google Scholar
[34]
A.S. Ferlauto, G.M. Ferreira, R.J. Koval, J.M. Pearce, C.R. Wronski, R.W. Collins, Evolution of crystallinity in mixed-phase (a+mc)-Si: H as determined by real time ellipsometry, Mat. Res. Soc. Symp. Proc. 762 (2003) A5. 10.
DOI: 10.1557/proc-762-a5.10
Google Scholar
[35]
M.A. Wank, A. Illiberi, F.D. Tichelaar, R.A.C.M.M. van Swaaij, M.C.M. van de Sanden, M. Zeman, Influence of hydrogen dilution on surface roughness development of a-Si: H thin films grown by remote plasma deposition, Phys. Status Solidi C 7 (2010).
DOI: 10.1002/pssc.200982835
Google Scholar
[36]
T. Fujibayashi, M. Kondo, In situ Auger electron spectroscopy studies of the growth of p-type microcrystalline silicon films on ZnO-coated glass substrates for microcrystalline silicon p-i-n solar cells, App. Phys. Lett. 87 (2005).
DOI: 10.1063/1.2135883
Google Scholar
[37]
S. Tardon, M. Reosch, R. Breuggemann, T. Unold, G.H. Bauer, Photoluminescence studies of a-Si: H/c-Si-heterojunction solar cells, J. Non-Crys. Solids 338-340 (2004) 444-447.
DOI: 10.1016/j.jnoncrysol.2004.03.015
Google Scholar
[38]
M. Cardenas, J. G. Mendoza-Alvarez, F. Sanchez-Sinencio, O. Zelaya, C. Menezes, Photoluminescent properties of films of CdTe on glass grown by a hot‐wall‐close space vapor transport method, J. Appl. Phys. 56 (1984) 2977-2980.
DOI: 10.1063/1.333767
Google Scholar
[39]
T.M. Searle, A. Dimba, T.H. Wang, M. Sendova-Vassileva, F. Alvarez, The Shape of the PL Band in A-SI: H and its Alloys of Carbon and Nitrogen, J. Non-Crys. Solids 164-166 (1993) 615-618.
DOI: 10.1016/0022-3093(93)90627-a
Google Scholar
[40]
V.Y. Timoshenko, K.A. Gonchar, I.V. Mirgorodskiy, N.E. Maslova, V.E. Nikulin, G.K. Mussabek, Y.T. Taurbaev, E.A. Svanbayev, T.I. Taurbaev, Efficient visible luminescence of nanocrystalline silicon prepared from amorphous silicon films by thermal annealing and stain etching, Nanoscale Res. Lett. 6 (2011).
DOI: 10.1186/1556-276x-6-349
Google Scholar
[41]
R.C. Miller, R. Bhat, Some remarks on excitation spectra versus photoluminescence spectra for the evaluation of quantum wells, J. App. Phys. 64 (1988) 3647-3649.
DOI: 10.1063/1.341404
Google Scholar
[42]
B.G. Yacobi, T.J. McMahon, A. Madan, Electron-beam-induced current microcharacterization of fabrication defects in hydrogenated amorphous silicon solar cells, Solar Cells 12 (1984) 329-335.
DOI: 10.1016/0379-6787(84)90111-x
Google Scholar
[43]
D.V. Gestel, I. Gordon, J. Poortmans, EBIC investigation of the influence of hydrogen passivation on thin-film polycrystalline silicon solar cells obtained by aluminium induced crystallization and epitaxy, Solid State Phenomena 156-158 (2010).
DOI: 10.4028/www.scientific.net/ssp.156-158.413
Google Scholar
[44]
M. Garin, U. Rau, W. Brendle, I. Martin, R. Alcubilla, Characterization of a-Si: H∕ c-Si interfaces by effective-lifetime measurements, J. App. Phys. 98 (2005) 093711-1-093711-9.
DOI: 10.1063/1.2128047
Google Scholar
[45]
L. Feng, M.Z. Quan, M.X. Jie, L. Peng, Y.Z. Shan, H. Bo, Influence of surface passivation on the minority carrier lifetime, Fe-B pair density and recombination center concentration, Chinese Sci. Bull. 55 (2010) 1828-1833.
DOI: 10.1007/s11434-009-3687-1
Google Scholar
[46]
Y. Tang, C. Zhou, W. Wang, Influence of intrinsic lifetime on silicon solar cell efficiencies, Proc. of ISES World Congress 4 (2009) 1180-1184.
DOI: 10.1007/978-3-540-75997-3_235
Google Scholar
[47]
G. Hahn, M. Käs, B. Herzog, Hydrogenation in crystalline silicon materials for photovoltaic application, Solid State Phen. 156-158 (2010) 343-349.
DOI: 10.4028/www.scientific.net/ssp.156-158.343
Google Scholar
[48]
N. Schuler, T. Hahn, K. Dornich, J.R. Niklas, B.G. Wendrock, Theoretical and experimental comparison of contactless lifetime measurement methods for thick silicon samples, Sol. Energy Mat. Sol. Cells 94 (2010) 1076-1080.
DOI: 10.1016/j.solmat.2010.02.028
Google Scholar
[49]
S. K. Dhungel, J. Yoo, K. Kim, S. Ghosh, S. Jung, J. Yi, Process induced variation in the measurement of minority carrier lifetime of silicon in solar cells fabrication, Mat. Sci. Eng. B 134 (2006) 287-290.
DOI: 10.1016/j.mseb.2006.07.009
Google Scholar
[50]
H. Liang, R.G. Gordon, Atmospheric pressure chemical vapor deposition of transparent conducting films of fluorine doped zinc oxide and their application to amorphous silicon solar cells, J. Mater. Sci. 42 (2007) 6388-6399.
DOI: 10.1007/s10853-006-1255-5
Google Scholar
[51]
C. Modanese, M.D. Sabatino, A. Soiland, L. Arnberg, Relationship between net doping density and resistivity of compensated mc-Si ingots, Physica Status Solidi (c) 8 (2011) 713-716.
DOI: 10.1002/pssc.201000210
Google Scholar
[52]
J. Holovsky, A. Poruba, A. Purkrt, Z. Remes, M. Vanecek, Comparison of photocurrent spectra measured by FTPS and CPM for amorphous silicon layers and solar cells, J. Non-Crys. Solids 354 (2008) 2167-2170.
DOI: 10.1016/j.jnoncrysol.2007.09.106
Google Scholar
[53]
A.H.M. Smets, J.H. van Helden, M.C.M. van de Sanden, Bulk and surface defects in a-Si: H films studied by means of the cavity ring down absorption technique, J. Non-Crys. Solids 299-302 (2002) 610-614.
DOI: 10.1016/s0022-3093(01)01026-2
Google Scholar
[54]
F. Leblanc, J. Perrin, E. Cornil, Optical absorption, light trapping and power dissipation in a-Si: H solar cells analyzed by photothermal deflection spectroscopy, J. Non-Crys. Solids 137-138 (1991) 1165-1168.
DOI: 10.1016/s0022-3093(05)80330-8
Google Scholar
[55]
J. Poortmans, V. Arkhipov, Thin film solar cells: fabrication, characterization and applications, John Wiley and Sons, Chichester, England, (2006).
DOI: 10.1002/0470091282
Google Scholar