Thin Film Solar Cell: Characteristics and Characterizations

Article Preview

Abstract:

In recent decades, due to some urgent and unavoidable issues, such as increasing energy demand, climate change, global warming, etc., the R&D of renewable energies have become inevitable to pave way the sustainable development of human society. In this regard, solar power is widely considered as the most appealing clean energy since there is no other one being as abundant as the sun. The amount of solar energy reaching our earth within one hour equals to the total annual energy need of all of humankind. Since the energy resources on Earth are being exhausted, solar energy have to serve as the main energy source in coming century and beyond. The photovoltaic solar cells developed so far have been based on silicon wafers, with this dominance likely to continue well into the future. The surge in manufacturing volume as well as emerging technologies over the last decade has resulted in greatly decreased costs. Therefore, several companies are now well below the USD 1 W−1 module manufacturing cost benchmark that was once regarded as the lowest possible with this technology. Thin-film silicon, such as hydrogenated amorphous silicon (a-Si), microcrystalline silicon (mc-Si) and related alloys, are promising materials for very low-cost solar cells. Here in this article, a brief description of thin film solar cell technologies followed by deferent state-of-art tools used for characterizing such solar cells are explored. Since characteristics of thin-film solar cells are the main ingredient in defining efficiency, the inherent properties are also mentioned alongside the characterizations.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

51-58

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.E.I. Schropp, R. Carius, G. Beaucarne, Amorphous silicon, microcrystalline silicon, and thin-film polycrystalline silicon solar cells, MRS Bull. 32 (2007) 219-224.

DOI: 10.1557/mrs2007.25

Google Scholar

[2] R. Santbergen, R.J.C. van Zolinge, The absorption factor of crystalline silicon PV cells: A numerical and experimental study, Sol. Energy Mater. Sol. Cell 92 (2007) 432-444.

DOI: 10.1016/j.solmat.2007.10.005

Google Scholar

[3] C. Strumpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Svrcek, C. del Canizo, I. Tobias, Modifying the solar spectrum to enhance silicon solar cell efficiency - An overview of available materials, Energy Mater. Sol. Cell 91 (2007).

DOI: 10.1016/j.solmat.2006.09.003

Google Scholar

[4] A. Matsuda, Thin-Film Silicon-Growth Process and Solar Cell Application, Jpn. J. Appl. Phys. 43 (2004) 7909-7920.

DOI: 10.1143/jjap.43.7909

Google Scholar

[5] J. Mahrholz, S. Shikolenko, B. Szyszka, T. Jung, Deposition of Amorphous Silicon Films by Gas Flow Sputtering (GFS), 24th Europ. Photovol. Sol. Energy Conf. 46 (2009) 3BV. 4 2879-2883.

Google Scholar

[6] H. Chatham, P. Bhat, A. Benson, C. Matovich, High-efficiency amorphous silicon p-i-n solar cells deposited from disilane at rates up to 2 nm/s using VHF discharges, J. Non-Cryst. Sol. 115 (1989) 201-203.

DOI: 10.1016/0022-3093(89)90404-3

Google Scholar

[7] Y. Ziegler, V. Daudrix, C. Droz, R. Platz, N. Wyrsch, A. Shah, More stable low gap a-Si: H layers deposited by PE-CVD at moderately high temperature with hydrogen dilution, Sol. Energy Mater. Sol. Cells 66 (2001) 413-419.

DOI: 10.1016/s0927-0248(00)00202-6

Google Scholar

[8] X. Xu, J. Yang, S. Guha, Hydrogen dilution effects on a-Si: H and a-SiGe: H materials properties and solar cell performance, J. Non-Crys. Solids 198-200 (1996) 1113-1116.

DOI: 10.1016/0022-3093(95)00657-5

Google Scholar

[9] H. Fujiwara, M. Kondo, Application of Spectroscopic Ellipsometry and Infrared Spectroscopy for the Real-Time Control and Characterization of a-Si: H Growth in a-Si: H/c-Si Heterojunction Solar Cells, Mater. Res. Soc. Symp. Proc. 862 (2005).

DOI: 10.1557/proc-862-a14.1

Google Scholar

[10] C. Modanese, M.D. Sabatino, A. Soiland, K. Peter, L. Arnberg, Investigation of bulk and solar cell properties of ingots cast from compensated solar grade silicon, Prog. Photovolt: Res. Appl. 19 (2011) 45-53.

DOI: 10.1002/pip.986

Google Scholar

[11] W. Tu, Y. Chang, C. Yang, D. Yeh, C. Ho, C. Hsueh, S. Lee, Hydrogenated amorphous silicon solar cell on glass substrate patterned by hexagonal nanocylinder array, Appl. Phys. Lett. 97 (2010) 193109-193111.

DOI: 10.1063/1.3515853

Google Scholar

[12] H. Stiebig, F. Siebke, W. Beyer, C. Beneking, B. Rech, H. Wagner, Interfaces in a-Si: H solar cell structures, Sol. Energy Mater. Sol. Cells 48 (1997) 351-363.

DOI: 10.1016/s0927-0248(97)00147-5

Google Scholar

[13] R. Biswas, D. Zhou, Improved photon absorption in a-Si: H solar cells using photonic crystal architectures, Mater. Res. Soc. Symp. Proc. 1066 (2008) A14-20.

DOI: 10.1557/proc-1066-a14-04

Google Scholar

[14] N. Sakikawa, M. Tamao, S. Miyazaki, M. Hirose, Structural inhomogeneity on hydrogenated amorphous silicon related to the photoelectric properties and defect density, Jpn. J. Appl. Phys. 38 (1999) 5768-5771.

DOI: 10.1143/jjap.38.5768

Google Scholar

[15] L. Li, Y. Li, J. A. A. Selvan, A. E. Delahoy, R. A. Levy, Correlations between structural properties and performance of microcrystalline silicon solar cells fabricated by conventional RF-PECVD, J. Non-Crys. Solids 347 (2004) 106-113.

DOI: 10.1016/j.jnoncrysol.2004.07.082

Google Scholar

[16] Z. Shen, T. Gotoh, M. Eguchi, N. Yoshida, T. Itoh and S. Nonomura, Study of nano-scale electrical properties of hydrogenated microcrystalline silicon solar cells by conductive atomic force microscope, Jpn. J. Appl. Phys. 46 (2007) 2858-2864.

DOI: 10.1143/jjap.46.2858

Google Scholar

[17] E. Verveniotis, B. Rezek, E. Sipek, J. Stuchlík, M. Ledinsky, J. Kocka, Impact of AFM-induced nano-pits in a-Si: H films on silicon crystal growth, Nanoscale Res. Lett. 6 (2011) 145-149.

DOI: 10.1186/1556-276x-6-145

Google Scholar

[18] B. Yan, C. Jiang, Y. Yan, L. Sivec, J. Yang, S. Guha, M.M. Al-Jassim, Effect of hydrogen dilution profiling on the microscopic structure of amorphous and nanocrystalline silicon mixed-phase solar cells, Phys. Status Solidi C 7 (2010) 513-516.

DOI: 10.1002/pssc.200982768

Google Scholar

[19] C. Hof, N. Wyrsch, A Shah, Influence of electric field distortion and i-layer quality on the collection function of drift-driven a-Si: H solar cells, J. Non-Crys. Solids 266-269 (2000) 1114-1118.

DOI: 10.1016/s0022-3093(99)00913-8

Google Scholar

[20] J. Herion, K. Szot, S. Barzen, F. Siebke, M. Teske, AFM and STM investigations of hydrogenated amorphous silicon: topography and barrier heights, Fresenius J. Anal. Chem. 358 (1997) 338-340.

DOI: 10.1007/s002160050423

Google Scholar

[21] E. Vallat-Sauvain, J. Bailat, J. Meier, X. Niquille, U. Kroll, A. Shah, Influence of the substrate's surface morphology and chemical nature on the nucleation and growth of microcrystalline silicon, Thin solid films 485 (2005) 77-81.

DOI: 10.1016/j.tsf.2005.03.017

Google Scholar

[22] K. Arima, T. Shigetoshi, H. Kakiuchi, M. Morita, Surface photovoltage measurements of intrinsic hydrogenated amorphous Si films on Si wafers on the nanometer scale, Physica B 376-377 (2006) 893-896.

DOI: 10.1016/j.physb.2005.12.223

Google Scholar

[23] O. Vatel, M. Tanimoto, Kelvin probe force microscopy for potential distribution measurement of semiconductor devices, J. App. Phys. 77 (1995) 2358-2362.

DOI: 10.1063/1.358758

Google Scholar

[24] C. -S. Jiang, H.R. Moutinho, M.J. Romero, M.M. Al-Jassim, Y.Q. Xu, Q. Wang, Distribution of the electrical potential in hydrogenated amorphous silicon solar cells, Thin Solid Flms 472 (2005) 203- 207.

DOI: 10.1016/j.tsf.2004.07.049

Google Scholar

[25] F. Liu, M. J. Romero, K. M. Jones, M. M. Al-Jassim, O. Kunz, J. Wong, A.G. Aberle, Solid-phase crystallization of evaporated silicon thin films on glass for photovoltaics: A combined SEM and TEM study, Proc. of SPIE 7409 (2009) 740906-1-740906-8.

DOI: 10.1117/12.823622

Google Scholar

[26] V.P. Oleshko, B.K. Nayak and M.C. Gupta, High spatial resolution analytical electron microscopic investigation of femtosecond-laser-induced crystallization of a-Si: H films, Micros. Microanal. 12 (2006) 634-635.

DOI: 10.1017/s1431927606066050

Google Scholar

[27] V.E. Ferry, M.A. Verschuuren, H.B.T. Li, R.E.I. Schropp, H.A. Atwater, A. Polman, Improved red-response in thin film a-Si: H solar cells with soft-imprinted plasmonic back reflectors, Appl. Phys. Lett. 95 (2009) 183503-183505.

DOI: 10.1063/1.3256187

Google Scholar

[28] F. Liu, M.M. AI-Jassim, D.L. Young, Ultra-high material-quality silicon pillars on glass, IEEE Xplore PVSC 2009 (2010) 002176-002179.

DOI: 10.1109/pvsc.2010.5615865

Google Scholar

[29] A.R.M. Yusoff, M.N. Syahrul, K. Henkel, High resolution transmission electron microscope studies of aSi: H solar cells, Pramana J. Phys. 68 (2007) 995-999.

DOI: 10.1007/s12043-007-0098-1

Google Scholar

[30] J.D. Saunderson, M.J. Witcomb, R. Swanepoel, Microstructure and morphology of α-Si : H solar cells grown on metallized flexible substrates, J. Mater. Sci. 36 (2001) 1563-1568.

Google Scholar

[31] I.A.S. Carvalho, R.L. Ribeiro, E. Muniz, E. Borba, J.R.T. Branco, A ftir, Raman and SEM-EBSD-EDS microstructure characterization of plasma thermally sprayed silicon sheet for low cost solar cells substrate, IEEE Xplore 978 (2009) 001461-001466.

DOI: 10.1109/pvsc.2009.5411325

Google Scholar

[32] D. Chandan, Effects of substrate temperature on structural properties of undoped silicon thin films, J. Appl. Phys. 91 (2002) 9401-9407.

DOI: 10.1063/1.1474611

Google Scholar

[33] S. Lee, J.H. Shim, D.J. You, S. Ahn, H Lee, The novel usage of spectroscopic ellipsometry for the development of amorphous Si solar cells, Sol. Energy Mat. Sol. Cells 95 (2011) 142-145.

DOI: 10.1016/j.solmat.2010.04.054

Google Scholar

[34] A.S. Ferlauto, G.M. Ferreira, R.J. Koval, J.M. Pearce, C.R. Wronski, R.W. Collins, Evolution of crystallinity in mixed-phase (a+mc)-Si: H as determined by real time ellipsometry, Mat. Res. Soc. Symp. Proc. 762 (2003) A5. 10.

DOI: 10.1557/proc-762-a5.10

Google Scholar

[35] M.A. Wank, A. Illiberi, F.D. Tichelaar, R.A.C.M.M. van Swaaij, M.C.M. van de Sanden, M. Zeman, Influence of hydrogen dilution on surface roughness development of a-Si: H thin films grown by remote plasma deposition, Phys. Status Solidi C 7 (2010).

DOI: 10.1002/pssc.200982835

Google Scholar

[36] T. Fujibayashi, M. Kondo, In situ Auger electron spectroscopy studies of the growth of p-type microcrystalline silicon films on ZnO-coated glass substrates for microcrystalline silicon p-i-n solar cells, App. Phys. Lett. 87 (2005).

DOI: 10.1063/1.2135883

Google Scholar

[37] S. Tardon, M. Reosch, R. Breuggemann, T. Unold, G.H. Bauer, Photoluminescence studies of a-Si: H/c-Si-heterojunction solar cells, J. Non-Crys. Solids 338-340 (2004) 444-447.

DOI: 10.1016/j.jnoncrysol.2004.03.015

Google Scholar

[38] M. Cardenas, J. G. Mendoza-Alvarez, F. Sanchez-Sinencio, O. Zelaya, C. Menezes, Photoluminescent properties of films of CdTe on glass grown by a hot‐wall‐close space vapor transport method, J. Appl. Phys. 56 (1984) 2977-2980.

DOI: 10.1063/1.333767

Google Scholar

[39] T.M. Searle, A. Dimba, T.H. Wang, M. Sendova-Vassileva, F. Alvarez, The Shape of the PL Band in A-SI: H and its Alloys of Carbon and Nitrogen, J. Non-Crys. Solids 164-166 (1993) 615-618.

DOI: 10.1016/0022-3093(93)90627-a

Google Scholar

[40] V.Y. Timoshenko, K.A. Gonchar, I.V. Mirgorodskiy, N.E. Maslova, V.E. Nikulin, G.K. Mussabek, Y.T. Taurbaev, E.A. Svanbayev, T.I. Taurbaev, Efficient visible luminescence of nanocrystalline silicon prepared from amorphous silicon films by thermal annealing and stain etching, Nanoscale Res. Lett. 6 (2011).

DOI: 10.1186/1556-276x-6-349

Google Scholar

[41] R.C. Miller, R. Bhat, Some remarks on excitation spectra versus photoluminescence spectra for the evaluation of quantum wells, J. App. Phys. 64 (1988) 3647-3649.

DOI: 10.1063/1.341404

Google Scholar

[42] B.G. Yacobi, T.J. McMahon, A. Madan, Electron-beam-induced current microcharacterization of fabrication defects in hydrogenated amorphous silicon solar cells, Solar Cells 12 (1984) 329-335.

DOI: 10.1016/0379-6787(84)90111-x

Google Scholar

[43] D.V. Gestel, I. Gordon, J. Poortmans, EBIC investigation of the influence of hydrogen passivation on thin-film polycrystalline silicon solar cells obtained by aluminium induced crystallization and epitaxy, Solid State Phenomena 156-158 (2010).

DOI: 10.4028/www.scientific.net/ssp.156-158.413

Google Scholar

[44] M. Garin, U. Rau, W. Brendle, I. Martin, R. Alcubilla, Characterization of a-Si: H∕ c-Si interfaces by effective-lifetime measurements, J. App. Phys. 98 (2005) 093711-1-093711-9.

DOI: 10.1063/1.2128047

Google Scholar

[45] L. Feng, M.Z. Quan, M.X. Jie, L. Peng, Y.Z. Shan, H. Bo, Influence of surface passivation on the minority carrier lifetime, Fe-B pair density and recombination center concentration, Chinese Sci. Bull. 55 (2010) 1828-1833.

DOI: 10.1007/s11434-009-3687-1

Google Scholar

[46] Y. Tang, C. Zhou, W. Wang, Influence of intrinsic lifetime on silicon solar cell efficiencies, Proc. of ISES World Congress 4 (2009) 1180-1184.

DOI: 10.1007/978-3-540-75997-3_235

Google Scholar

[47] G. Hahn, M. Käs, B. Herzog, Hydrogenation in crystalline silicon materials for photovoltaic application, Solid State Phen. 156-158 (2010) 343-349.

DOI: 10.4028/www.scientific.net/ssp.156-158.343

Google Scholar

[48] N. Schuler, T. Hahn, K. Dornich, J.R. Niklas, B.G. Wendrock, Theoretical and experimental comparison of contactless lifetime measurement methods for thick silicon samples, Sol. Energy Mat. Sol. Cells 94 (2010) 1076-1080.

DOI: 10.1016/j.solmat.2010.02.028

Google Scholar

[49] S. K. Dhungel, J. Yoo, K. Kim, S. Ghosh, S. Jung, J. Yi, Process induced variation in the measurement of minority carrier lifetime of silicon in solar cells fabrication, Mat. Sci. Eng. B 134 (2006) 287-290.

DOI: 10.1016/j.mseb.2006.07.009

Google Scholar

[50] H. Liang, R.G. Gordon, Atmospheric pressure chemical vapor deposition of transparent conducting films of fluorine doped zinc oxide and their application to amorphous silicon solar cells, J. Mater. Sci. 42 (2007) 6388-6399.

DOI: 10.1007/s10853-006-1255-5

Google Scholar

[51] C. Modanese, M.D. Sabatino, A. Soiland, L. Arnberg, Relationship between net doping density and resistivity of compensated mc-Si ingots, Physica Status Solidi (c) 8 (2011) 713-716.

DOI: 10.1002/pssc.201000210

Google Scholar

[52] J. Holovsky, A. Poruba, A. Purkrt, Z. Remes, M. Vanecek, Comparison of photocurrent spectra measured by FTPS and CPM for amorphous silicon layers and solar cells, J. Non-Crys. Solids 354 (2008) 2167-2170.

DOI: 10.1016/j.jnoncrysol.2007.09.106

Google Scholar

[53] A.H.M. Smets, J.H. van Helden, M.C.M. van de Sanden, Bulk and surface defects in a-Si: H films studied by means of the cavity ring down absorption technique, J. Non-Crys. Solids 299-302 (2002) 610-614.

DOI: 10.1016/s0022-3093(01)01026-2

Google Scholar

[54] F. Leblanc, J. Perrin, E. Cornil, Optical absorption, light trapping and power dissipation in a-Si: H solar cells analyzed by photothermal deflection spectroscopy, J. Non-Crys. Solids 137-138 (1991) 1165-1168.

DOI: 10.1016/s0022-3093(05)80330-8

Google Scholar

[55] J. Poortmans, V. Arkhipov, Thin film solar cells: fabrication, characterization and applications, John Wiley and Sons, Chichester, England, (2006).

DOI: 10.1002/0470091282

Google Scholar