Production of Utilizable Energy from Renewable Resources: Mechanism, Machinery and Effect on Environment

Article Preview

Abstract:

The renewable energy sources had been known to humankind since the very beginning of the human civilization, though practiced in very primitive forms. The first civilization and subsequent greater civilizations, came up, existed, and flourished at or near river valley/basins. Rivers provided water for irrigation, domestic utilization, transportation; overall development of the entire civilization. In the latter years, the increase in the human population and certain revolutionary inventions and discoveries like fire, the wheel, and domestication of cattle and animals led the movement and spread of the human populations in the other parts of the globe far from river irrigated lands. Humans learnt to utilize underground waters and harvest rainwater for living and survival. In the course of development, there also increased demand for more energy and its storage so that it can be utilized as and when required. This brought humankind to discover the laws of thermodynamics, emergence of combustion engines, electromagnetic induction, electricity and storage devices, such as batteries and supercapacitors. The development has been revolutionized since last few centuries with increasing demand of energy with growing industries and a faster life. Nowadays, because of massive exploitation of fossil resources for fuel and electricity, and concerns of global warming, exploring renewable energy alternatives are gaining momentum. Of many renewable resources, viz., sun, wind, water, geothermal, biomass, etc., the biomass energy is the most widely studied one in terms of both, published literature and wide social acceptance across the globe followed by solar and wind energy.The chapter presents the potential alternatives to non-renewable energy resources, mechanism and machinery to draw and exploit the energy in the usable or utilizable form; past, present, recent progresses and future scope of the ongoing researches on this subject. The chapter also deals with the relative merits or pros and cons of the massive and large scale installation of machinery to produce electricity from some of the noteworthy renewable energy resources, such as, wind, water and sun, which is affecting the local environment or natural habitats, flora and fauna; overall influence on the delicate balance of the ecosystem.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-32

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.R. Holloway. Sun Tempered Architecture: A Simple Design Methodology For Passive Solar Houses. [Online] 2009. http: /www. dennisrhollowayarchitect. com/simpledesignmethodology. html.

Google Scholar

[2] R.M. Hartweg. Standing on the Shoulders of Giants. www. ZeroEnergyDesign. com. [Online] 2010. http: /www. emeraldecocity. com/Standing%20on%20the%20Shoulders%20of%20Giants. html.

Google Scholar

[3] K.H. Solangib, M.R. Islamb, R. Saidura, N.A. Rahimb, H. Fayazb. A review on global solar energy policy, Renewable Sustainable Energy Rev. 15 (2011) 2149-2163.

Google Scholar

[4] A. Bahadori, C. Nwaoha, A review on solar energy utilisation in Australia, Renewable Sustainable Energy Rev. 18 (2013) 1-5.

DOI: 10.1016/j.rser.2012.10.003

Google Scholar

[5] H.B. Khalil, S.J.H. Zaidi, Energy crisis and potential of solar energy in Pakistan, Renewable Sustainable Energy Rev. 31 (2014) 194-201.

DOI: 10.1016/j.rser.2013.11.023

Google Scholar

[6] M.P. Pablo-Romero, A. Sa´nchez-Braza, M. Pe´rez, Incentives to promote solar thermal energy in Spain, Renewable Sustainable Energy Rev. 22 (2013) 198-208.

DOI: 10.1016/j.rser.2013.01.034

Google Scholar

[7] Z. Abdin, M.A. Alim, R. Saidur, M.R. Islam, W. Rashmi, S. Mekhilef, A. Wadi, Solar energy harvesting with the application of nanotechnology, Renewable Sustainable Energy Rev. 26 (20113) 837-852.

DOI: 10.1016/j.rser.2013.06.023

Google Scholar

[8] N.R. Moheimani, D. Parlevliet, Sustainable solar energy conversion to chemical and electrical energy, Renewable Sustainable Energy Rev. 27 (2013) 494-504.

DOI: 10.1016/j.rser.2013.07.006

Google Scholar

[9] V.V. Tyagia, N.L. Panwar, N.A. Rahima, R. Kothari, Review on solar air heating system with and without thermal energy storage, Renewable Sustainable Energy Rev. 16 (2012) 2289-2303.

DOI: 10.1016/j.rser.2011.12.005

Google Scholar

[10] A. Saxenaa, Varun, S.P. Pandey, G. Srivastava. A thermodynamic review on solar box type cookers, Renewable Sustainable Energy Rev. 15 (2011) 3301-3318.

DOI: 10.1016/j.rser.2011.04.017

Google Scholar

[11] A. Sharma, C.R. Chen, V.V.S. Murty, A. Shukla, Solar cooker with latent heat storage systems: A review, Renewable Sustainable Energy Rev. 13 (2009) 1599-1605.

DOI: 10.1016/j.rser.2008.09.020

Google Scholar

[12] V. Klevas, L. Murauskaite, A. Kleviene, E. Perednis, Measures for increasing demand of solar energy, Renewable Sustainable Energy Rev. 27 (2013) 55-64.

DOI: 10.1016/j.rser.2013.06.050

Google Scholar

[13] M. Shatat, M. Worall, S. Riffat, Opportunities for solar water desalination worldwide: Review, Sustainable Cities and Society 9 (2013) 67-80.

DOI: 10.1016/j.scs.2013.03.004

Google Scholar

[14] I. Sarbu, C. Sebarchievici. Review of solar refrigeration and cooling systems, Energy and Build. 67 (2013) 286-297.

DOI: 10.1016/j.enbuild.2013.08.022

Google Scholar

[15] X. Zhang, X. Zhao, S. Smith, J. Xu, X. Yu, Review of R&D progress and practical application of the solar, Renewable Sustainable Energy Rev. 16 (2012) 599- 617.

DOI: 10.1016/j.rser.2011.08.026

Google Scholar

[16] G. Pirasteh, R. Saidur, S.M.A. Rahman, N.A. Rahim, A review on development of solar drying applications, Renewable Sustainable Energy Rev. 31 (2014) 133-148.

DOI: 10.1016/j.rser.2013.11.052

Google Scholar

[17] L.M. Bal, S. Satya, S.N. Naik, Solar dryer with thermal energy storage systems for drying agricultural food, Renewable Sustainable Energy Rev. 14 (2010) 2298-2314.

DOI: 10.1016/j.rser.2010.04.014

Google Scholar

[18] G. Xiao, X. Wang, M. Ni, F. Wang, W. Zhu, Z. Luo, K. Cen, A review on solar stills for brine desalination, Appl. Energy 103 (2013) 642-652.

DOI: 10.1016/j.apenergy.2012.10.029

Google Scholar

[19] K.R. Ranjan, S.C. Kaushik, Energy, exergy and thermo-economic analysis of solar distillation, Renewable Sustainable Energy Rev. 27 (2013) 709-723.

DOI: 10.1016/j.rser.2013.07.025

Google Scholar

[20] V. Sivakumar, E.G. Sundaram, Improvement techniques of solar still efficiency: A review, Renewable Sustainable Energy Rev. 28 (2013) 246-264.

DOI: 10.1016/j.rser.2013.07.037

Google Scholar

[21] O. Mahian, A. Kianifar, S.A. Kalogirou, I. Pop, S. Wongwises, A review of the applications of nanofluids in solar energy, Int. J. Heat Mass Transfer 57 (2013) 582-594.

DOI: 10.1016/j.ijheatmasstransfer.2012.10.037

Google Scholar

[22] H. Singh, R.P. Saini, J.S. Saini, A review on packed bed solar energy storage systems, Renewable Sustainable Energy Rev. 14 (2010) 1059-1069.

DOI: 10.1016/j.rser.2009.10.022

Google Scholar

[23] O. Ozgener, A. Hepbasli, A review on the energy and exergy analysis of solar. 2007, Renewable Sustainable Energy Rev. 11 (2007) 482-496.

DOI: 10.1016/j.rser.2004.12.010

Google Scholar

[24] C. Castr, M. Mediavilla, L. Miguel, F. Frechoso. Global solar electric potential: A review of their technical and sustainable limits, Renewable Sustainable Energy Rev. 28 (2013) 824-835.

DOI: 10.1016/j.rser.2013.08.040

Google Scholar

[25] N. Yu, R.Z. Wang, L.W. Wang, Sorption thermal storage for solar energy, Prog. Energy Combust. Sci. 39 (2013) 489-514.

Google Scholar

[26] O. Prakash, A. Kumar, Solar greenhouse drying: A review, Renewable Sustainable Energy Rev. 29 (2014) 905-910.

DOI: 10.1016/j.rser.2013.08.084

Google Scholar

[27] R.R. Hernandez, S.B. Easter, M.L. Murphy-Mariscal, F.T. Maestre, M. Tavassoli, Environmental impacts of utility-scale solar energy, Renewable Sustainable Energy Rev. 29 (2014) 766-779.

DOI: 10.1016/j.rser.2013.08.041

Google Scholar

[28] M. Simas, S. Pacca, Assessing employment in renewable energy technologies: A case study, Renewable Sustainable Energy Rev. 31 (2014) 83-90.

DOI: 10.1016/j.rser.2013.11.046

Google Scholar

[29] S. Chingulpitak, S. Wongwises, Critical review of the current status of wind energy in Thailand, Renewable Sustainable Energy Rev. 31 (2014) 312-318.

DOI: 10.1016/j.rser.2013.11.038

Google Scholar

[30] X. Sun, D. Huang, G. Wu, The current state of offshore wind energy technology development, Energy 41 (2012) 298-312.

DOI: 10.1016/j.energy.2012.02.054

Google Scholar

[31] P. -C. Ma, Y. Zhang, Perspectives of carbon nanotubes/ polymer nanocomposites, Renewable Sustainable Energy Rev. 30 (2014) 651-660.

DOI: 10.1016/j.rser.2013.11.008

Google Scholar

[32] Darmawi, R. Sipahutar, S.M. Bernas, M.S. Imanuddin, Renewable energy and hydro power utilization tendency worldwide, Renewable Sustainable Energy Rev. 17 (2013) 213-215.

DOI: 10.1016/j.rser.2012.09.010

Google Scholar

[33] R. H. Charlier, Ocean alternative energy: The view from China—small is beautiful, Renewable Sustainable Energy Rev. 5 (2001) 403-409.

Google Scholar

[34] H. -Y. Chong, W. -H. Lam, Ocean renewable energy in Malaysia: The potential of the Straits of Malacca, Renewable Sustainable Energy Rev. 13 (2013) 169-178.

DOI: 10.1016/j.rser.2013.02.021

Google Scholar

[35] G. Kim, M.E. Lee, K.S. Lee, J. -S. Park, W.M. Jeong, S.K. Kang, J. -G. Soh, H. Kim, An overview of ocean renewable energy resources in Korea, Renewable Sustainable Energy Rev. 16 (2012) 2278-2288.

DOI: 10.1016/j.rser.2012.01.040

Google Scholar

[36] Y. Hong, R. Waters, C. Boström, M. Eriksson, J. Engström, Review on electrical control strategies for wave energy, Renewable Sustainable Energy Rev. 31 (2014) 329-342.

DOI: 10.1016/j.rser.2013.11.053

Google Scholar

[37] I. López, J. Andreu, S. Ceballos, I.M. Alegría, Review of wave energy technologies and the necessary power-equipment. Renewable Sustainable Energy Rev. 27 (2013) 413-434.

DOI: 10.1016/j.rser.2013.07.009

Google Scholar

[38] M. Fadaeenejad, R. Shamsipour, S.D. Rokni, C. Gomes. New approaches in harnessing wave energy: With special attention, Renewable Sustainable Energy Rev. 29 (2014) 345-354.

DOI: 10.1016/j.rser.2013.08.077

Google Scholar

[39] A.F. de O. Falca˜o, Wave energy utilization: A review of the technologies, Renewable Sustainable Energy Rev. 14 (2010) 899-918.

DOI: 10.1016/j.rser.2009.11.003

Google Scholar

[40] Z. Defne, K.A. Haas, H.M. Fritz, GIS based multi-criteria assessment of tidal stream power potential: A case study, Renewable Sustainable Energy Rev. 15 (2011) 2310-2321.

DOI: 10.1016/j.rser.2011.02.005

Google Scholar

[41] US Department of the Interior (May 2006). Ocean Current Energy Potential on the U.S. Outer Continental Shelf, (2006).

Google Scholar

[42] M. Grabbe, E. Lalander, S. Lundin, M. Leijon, A review of the tidal current energy resource in Norway, Renewable Sustainable Energy Rev. 13 (2009) 1898-(1909).

DOI: 10.1016/j.rser.2009.01.026

Google Scholar

[43] W. -H. Lam, A. Bhatia, Folding tidal turbine as an innovative concept toward the new era of turbines, Renewable Sustainable Energy Rev. 28 (2013) 463-473.

DOI: 10.1016/j.rser.2013.08.038

Google Scholar

[44] M.J. Khan, G. Bhuyan, M.T. Iqbal, J.E. Quaicoe, Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review, Appl. Energy 86 (2009) 1823-1835.

DOI: 10.1016/j.apenergy.2009.02.017

Google Scholar

[45] T. Hooper, M. Austen, Tidal barrages in the UK: Ecological and social impacts, potential mitigation, and tools to support barrage planning, Renewable Sustainable Energy Rev. 23 (2013) 289-298.

DOI: 10.1016/j.rser.2013.03.001

Google Scholar

[46] T. Nguyen, Tidal Power: Alternative Source of Energy. 2008. COSMOS 2008 UCD.

Google Scholar

[47] A. Shah, List of tidal power plants and future tidal stations facing difficult times, (2011) http: /www. greenworldinvestor. com/2011/03/13/list-of-tidal-power-plants-and-future-tidal-stations-facing-difficult-times [Online].

DOI: 10.7717/peerj.9186/supp-5

Google Scholar

[48] C. Frid, E. Andonegi, J. Depestele, A. Judd, D. Rihan, S.I. Rogers, E. Kenchington, The environmental interactions of tidal and wave energy generation devices, Environ. Impact Assess. Rev. 32 (2012) 133-139.

DOI: 10.1016/j.eiar.2011.06.002

Google Scholar

[49] Raunekk, Lamar Stonecypher, Imitating Nature; Biomimicry, (2009) http: /www. brighthub. com/environment/renewable-energy/articles/39996. aspx [Online].

Google Scholar

[50] R. E. Pattle, Production of Electric Power by mixing Fresh and Salt Water in the Hydroelectric Pile, Nature 174 (1954) 660.

DOI: 10.1038/174660a0

Google Scholar

[51] L. Sidney, S. Srinivasa, US 3133132 A Israel, (1964).

Google Scholar

[52] 52. S. Loeb, Osmotic power plants, Science 189 (1975) 654-655.

Google Scholar

[53] R. Bertani, I. Thain, Geothermal Power Generating Plant CO2 Emission Survey, (http: /www. geothermal-energy. org/documenti/IGA/newsletter/n49. pdf), IGA News (International Geothermal Association) (49) (2002) 1-3.

Google Scholar

[54] Lewis, Anthony, et al. IPCC: Special Report on Renewable Energy Sources and Climate Change Mitigation, (2011).

Google Scholar

[55] J. Hanova, H. Dowlatabadi, Strategic GHG reduction through the use of ground source heat pump technology, Environ. Res. Lett. 2(4) (2007) 044001 (8pp) (doi: 10. 1088/1748-9326/2/4/044001).

DOI: 10.1088/1748-9326/2/4/044001

Google Scholar

[56] I.A. Thain, A Brief History of the Wairakei Geothermal Power Project, Geo-Heat Centre Quarterly Bulletin 19(3) (1998) 1-4.

Google Scholar

[57] Staufen: Risse: Hoffnung in Staufen: Quellvorgänge lassen nach. badische-zeitung. de. Retrieived in (2014).

Google Scholar

[58] DLR Portal – TerraSAR-X image of the month: Ground uplift under Staufen's Old Town. Dlr. de . (2009).

Google Scholar

[59] WECHSELWIRKUNG – Numerische Geotechnik. Wechselwirkung. eu. . Retrieved on 2013-04-24.

Google Scholar

[60] N. Deichmann, M. Mai, et al. Seismicity Induced by Water Injection for Geothermal Reservoir Stimulation 5 km Below the City of Basel, Switzerland. s. l. : American Geophysical Union (American Geophysical Union), 2007. p.53 (08).

Google Scholar

[61] http: /www. eia. gov/kids/energy. cfm?page=biomass_home-basics-k. cfm. Energy Kids: Renewable Biomass. [Online].

Google Scholar

[62] Fuel Ethanol Production: GSP Systems Biology Research. s. l. : U.S. Department of Energy Office of Science, (2010).

Google Scholar

[63] Breaking the Biological Barriers to Cellulosic Ethanol: A Joint Research Agenda. (2006).

Google Scholar

[64] G. Liu, E. D. Larson, R. H. Williams, T. G. Kreutz, X. Guo, Making fischer-tropsch fuels and electricity from coal and biomass: Performance and cost analysis, Energy & Fuels 25 (2011) 415-437.

DOI: 10.1021/ef101184e

Google Scholar

[65] A.K. Rajvanshi, Biomass Gasification, in: D. Yogi Goswami (Eds. ), Alternative Energy in Agriculture, Vol-II, CRC Press, 1986, pp.83-102.

Google Scholar

[66] A. Shrotri, A. Tanksale, J.N. Beltramini, H. Gurav, S.V. Chilukuri, Conversion of cellulose to polyols over promoted nickel catalysts, Catal. Sci. Technol. 2 (2012) 1852-1858.

DOI: 10.1039/c2cy20119d

Google Scholar

[67] H. Kobayashi, M. Yabushita, T. Komanoya, K. Hara, I. Fujita, A. Fukuoka, High-Yielding One-Pot Synthesis of Glucose from Cellulose Using Simple Activated Carbons and Trace Hydrochloric Acid, ACS Catalysis 3(4) (2013) 581-587.

DOI: 10.1021/cs300845f

Google Scholar

[68] J.N. Chheda, Y. Román-Leshkov, J.A. Dumesic, Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono- and poly-saccharides, Green Chem. 9 (2007) 342-350.

DOI: 10.1039/b611568c

Google Scholar

[69] G.W. Huber, S. Iborra, A. Corma, Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering, Chem. Rev. Vol. 106 (2006) 4044-4098.

DOI: 10.1021/cr068360d

Google Scholar

[70] A. -L. Marshall, P.J. Alaimo, Useful Products from Complex Starting Materials: Common Chemicals from Biomass Feedstocks, Chem. Eur. J. 16(17) (2010) 4970-4980.

DOI: 10.1002/chem.200903028

Google Scholar

[71] Biomass Energy Center. http: /www. biomassenergycentre. org. uk/portal/page?_pageid=75, 15179&_dad=portal&_ schema=PORTAL. [Online] www. direct. gov. uk.

Google Scholar

[72] J. Zhang, K.R. Smith, Household Air Pollution from Coal and Biomass Fuels in China: Measurements, Health Impacts, and Interventions, Environ. Health Perspect. 115(6) (2007) 848-855.

DOI: 10.1289/ehp.9479

Google Scholar