[1]
D.R. Holloway. Sun Tempered Architecture: A Simple Design Methodology For Passive Solar Houses. [Online] 2009. http: /www. dennisrhollowayarchitect. com/simpledesignmethodology. html.
Google Scholar
[2]
R.M. Hartweg. Standing on the Shoulders of Giants. www. ZeroEnergyDesign. com. [Online] 2010. http: /www. emeraldecocity. com/Standing%20on%20the%20Shoulders%20of%20Giants. html.
Google Scholar
[3]
K.H. Solangib, M.R. Islamb, R. Saidura, N.A. Rahimb, H. Fayazb. A review on global solar energy policy, Renewable Sustainable Energy Rev. 15 (2011) 2149-2163.
Google Scholar
[4]
A. Bahadori, C. Nwaoha, A review on solar energy utilisation in Australia, Renewable Sustainable Energy Rev. 18 (2013) 1-5.
DOI: 10.1016/j.rser.2012.10.003
Google Scholar
[5]
H.B. Khalil, S.J.H. Zaidi, Energy crisis and potential of solar energy in Pakistan, Renewable Sustainable Energy Rev. 31 (2014) 194-201.
DOI: 10.1016/j.rser.2013.11.023
Google Scholar
[6]
M.P. Pablo-Romero, A. Sa´nchez-Braza, M. Pe´rez, Incentives to promote solar thermal energy in Spain, Renewable Sustainable Energy Rev. 22 (2013) 198-208.
DOI: 10.1016/j.rser.2013.01.034
Google Scholar
[7]
Z. Abdin, M.A. Alim, R. Saidur, M.R. Islam, W. Rashmi, S. Mekhilef, A. Wadi, Solar energy harvesting with the application of nanotechnology, Renewable Sustainable Energy Rev. 26 (20113) 837-852.
DOI: 10.1016/j.rser.2013.06.023
Google Scholar
[8]
N.R. Moheimani, D. Parlevliet, Sustainable solar energy conversion to chemical and electrical energy, Renewable Sustainable Energy Rev. 27 (2013) 494-504.
DOI: 10.1016/j.rser.2013.07.006
Google Scholar
[9]
V.V. Tyagia, N.L. Panwar, N.A. Rahima, R. Kothari, Review on solar air heating system with and without thermal energy storage, Renewable Sustainable Energy Rev. 16 (2012) 2289-2303.
DOI: 10.1016/j.rser.2011.12.005
Google Scholar
[10]
A. Saxenaa, Varun, S.P. Pandey, G. Srivastava. A thermodynamic review on solar box type cookers, Renewable Sustainable Energy Rev. 15 (2011) 3301-3318.
DOI: 10.1016/j.rser.2011.04.017
Google Scholar
[11]
A. Sharma, C.R. Chen, V.V.S. Murty, A. Shukla, Solar cooker with latent heat storage systems: A review, Renewable Sustainable Energy Rev. 13 (2009) 1599-1605.
DOI: 10.1016/j.rser.2008.09.020
Google Scholar
[12]
V. Klevas, L. Murauskaite, A. Kleviene, E. Perednis, Measures for increasing demand of solar energy, Renewable Sustainable Energy Rev. 27 (2013) 55-64.
DOI: 10.1016/j.rser.2013.06.050
Google Scholar
[13]
M. Shatat, M. Worall, S. Riffat, Opportunities for solar water desalination worldwide: Review, Sustainable Cities and Society 9 (2013) 67-80.
DOI: 10.1016/j.scs.2013.03.004
Google Scholar
[14]
I. Sarbu, C. Sebarchievici. Review of solar refrigeration and cooling systems, Energy and Build. 67 (2013) 286-297.
DOI: 10.1016/j.enbuild.2013.08.022
Google Scholar
[15]
X. Zhang, X. Zhao, S. Smith, J. Xu, X. Yu, Review of R&D progress and practical application of the solar, Renewable Sustainable Energy Rev. 16 (2012) 599- 617.
DOI: 10.1016/j.rser.2011.08.026
Google Scholar
[16]
G. Pirasteh, R. Saidur, S.M.A. Rahman, N.A. Rahim, A review on development of solar drying applications, Renewable Sustainable Energy Rev. 31 (2014) 133-148.
DOI: 10.1016/j.rser.2013.11.052
Google Scholar
[17]
L.M. Bal, S. Satya, S.N. Naik, Solar dryer with thermal energy storage systems for drying agricultural food, Renewable Sustainable Energy Rev. 14 (2010) 2298-2314.
DOI: 10.1016/j.rser.2010.04.014
Google Scholar
[18]
G. Xiao, X. Wang, M. Ni, F. Wang, W. Zhu, Z. Luo, K. Cen, A review on solar stills for brine desalination, Appl. Energy 103 (2013) 642-652.
DOI: 10.1016/j.apenergy.2012.10.029
Google Scholar
[19]
K.R. Ranjan, S.C. Kaushik, Energy, exergy and thermo-economic analysis of solar distillation, Renewable Sustainable Energy Rev. 27 (2013) 709-723.
DOI: 10.1016/j.rser.2013.07.025
Google Scholar
[20]
V. Sivakumar, E.G. Sundaram, Improvement techniques of solar still efficiency: A review, Renewable Sustainable Energy Rev. 28 (2013) 246-264.
DOI: 10.1016/j.rser.2013.07.037
Google Scholar
[21]
O. Mahian, A. Kianifar, S.A. Kalogirou, I. Pop, S. Wongwises, A review of the applications of nanofluids in solar energy, Int. J. Heat Mass Transfer 57 (2013) 582-594.
DOI: 10.1016/j.ijheatmasstransfer.2012.10.037
Google Scholar
[22]
H. Singh, R.P. Saini, J.S. Saini, A review on packed bed solar energy storage systems, Renewable Sustainable Energy Rev. 14 (2010) 1059-1069.
DOI: 10.1016/j.rser.2009.10.022
Google Scholar
[23]
O. Ozgener, A. Hepbasli, A review on the energy and exergy analysis of solar. 2007, Renewable Sustainable Energy Rev. 11 (2007) 482-496.
DOI: 10.1016/j.rser.2004.12.010
Google Scholar
[24]
C. Castr, M. Mediavilla, L. Miguel, F. Frechoso. Global solar electric potential: A review of their technical and sustainable limits, Renewable Sustainable Energy Rev. 28 (2013) 824-835.
DOI: 10.1016/j.rser.2013.08.040
Google Scholar
[25]
N. Yu, R.Z. Wang, L.W. Wang, Sorption thermal storage for solar energy, Prog. Energy Combust. Sci. 39 (2013) 489-514.
Google Scholar
[26]
O. Prakash, A. Kumar, Solar greenhouse drying: A review, Renewable Sustainable Energy Rev. 29 (2014) 905-910.
DOI: 10.1016/j.rser.2013.08.084
Google Scholar
[27]
R.R. Hernandez, S.B. Easter, M.L. Murphy-Mariscal, F.T. Maestre, M. Tavassoli, Environmental impacts of utility-scale solar energy, Renewable Sustainable Energy Rev. 29 (2014) 766-779.
DOI: 10.1016/j.rser.2013.08.041
Google Scholar
[28]
M. Simas, S. Pacca, Assessing employment in renewable energy technologies: A case study, Renewable Sustainable Energy Rev. 31 (2014) 83-90.
DOI: 10.1016/j.rser.2013.11.046
Google Scholar
[29]
S. Chingulpitak, S. Wongwises, Critical review of the current status of wind energy in Thailand, Renewable Sustainable Energy Rev. 31 (2014) 312-318.
DOI: 10.1016/j.rser.2013.11.038
Google Scholar
[30]
X. Sun, D. Huang, G. Wu, The current state of offshore wind energy technology development, Energy 41 (2012) 298-312.
DOI: 10.1016/j.energy.2012.02.054
Google Scholar
[31]
P. -C. Ma, Y. Zhang, Perspectives of carbon nanotubes/ polymer nanocomposites, Renewable Sustainable Energy Rev. 30 (2014) 651-660.
DOI: 10.1016/j.rser.2013.11.008
Google Scholar
[32]
Darmawi, R. Sipahutar, S.M. Bernas, M.S. Imanuddin, Renewable energy and hydro power utilization tendency worldwide, Renewable Sustainable Energy Rev. 17 (2013) 213-215.
DOI: 10.1016/j.rser.2012.09.010
Google Scholar
[33]
R. H. Charlier, Ocean alternative energy: The view from China—small is beautiful, Renewable Sustainable Energy Rev. 5 (2001) 403-409.
Google Scholar
[34]
H. -Y. Chong, W. -H. Lam, Ocean renewable energy in Malaysia: The potential of the Straits of Malacca, Renewable Sustainable Energy Rev. 13 (2013) 169-178.
DOI: 10.1016/j.rser.2013.02.021
Google Scholar
[35]
G. Kim, M.E. Lee, K.S. Lee, J. -S. Park, W.M. Jeong, S.K. Kang, J. -G. Soh, H. Kim, An overview of ocean renewable energy resources in Korea, Renewable Sustainable Energy Rev. 16 (2012) 2278-2288.
DOI: 10.1016/j.rser.2012.01.040
Google Scholar
[36]
Y. Hong, R. Waters, C. Boström, M. Eriksson, J. Engström, Review on electrical control strategies for wave energy, Renewable Sustainable Energy Rev. 31 (2014) 329-342.
DOI: 10.1016/j.rser.2013.11.053
Google Scholar
[37]
I. López, J. Andreu, S. Ceballos, I.M. Alegría, Review of wave energy technologies and the necessary power-equipment. Renewable Sustainable Energy Rev. 27 (2013) 413-434.
DOI: 10.1016/j.rser.2013.07.009
Google Scholar
[38]
M. Fadaeenejad, R. Shamsipour, S.D. Rokni, C. Gomes. New approaches in harnessing wave energy: With special attention, Renewable Sustainable Energy Rev. 29 (2014) 345-354.
DOI: 10.1016/j.rser.2013.08.077
Google Scholar
[39]
A.F. de O. Falca˜o, Wave energy utilization: A review of the technologies, Renewable Sustainable Energy Rev. 14 (2010) 899-918.
DOI: 10.1016/j.rser.2009.11.003
Google Scholar
[40]
Z. Defne, K.A. Haas, H.M. Fritz, GIS based multi-criteria assessment of tidal stream power potential: A case study, Renewable Sustainable Energy Rev. 15 (2011) 2310-2321.
DOI: 10.1016/j.rser.2011.02.005
Google Scholar
[41]
US Department of the Interior (May 2006). Ocean Current Energy Potential on the U.S. Outer Continental Shelf, (2006).
Google Scholar
[42]
M. Grabbe, E. Lalander, S. Lundin, M. Leijon, A review of the tidal current energy resource in Norway, Renewable Sustainable Energy Rev. 13 (2009) 1898-(1909).
DOI: 10.1016/j.rser.2009.01.026
Google Scholar
[43]
W. -H. Lam, A. Bhatia, Folding tidal turbine as an innovative concept toward the new era of turbines, Renewable Sustainable Energy Rev. 28 (2013) 463-473.
DOI: 10.1016/j.rser.2013.08.038
Google Scholar
[44]
M.J. Khan, G. Bhuyan, M.T. Iqbal, J.E. Quaicoe, Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review, Appl. Energy 86 (2009) 1823-1835.
DOI: 10.1016/j.apenergy.2009.02.017
Google Scholar
[45]
T. Hooper, M. Austen, Tidal barrages in the UK: Ecological and social impacts, potential mitigation, and tools to support barrage planning, Renewable Sustainable Energy Rev. 23 (2013) 289-298.
DOI: 10.1016/j.rser.2013.03.001
Google Scholar
[46]
T. Nguyen, Tidal Power: Alternative Source of Energy. 2008. COSMOS 2008 UCD.
Google Scholar
[47]
A. Shah, List of tidal power plants and future tidal stations facing difficult times, (2011) http: /www. greenworldinvestor. com/2011/03/13/list-of-tidal-power-plants-and-future-tidal-stations-facing-difficult-times [Online].
DOI: 10.7717/peerj.9186/supp-5
Google Scholar
[48]
C. Frid, E. Andonegi, J. Depestele, A. Judd, D. Rihan, S.I. Rogers, E. Kenchington, The environmental interactions of tidal and wave energy generation devices, Environ. Impact Assess. Rev. 32 (2012) 133-139.
DOI: 10.1016/j.eiar.2011.06.002
Google Scholar
[49]
Raunekk, Lamar Stonecypher, Imitating Nature; Biomimicry, (2009) http: /www. brighthub. com/environment/renewable-energy/articles/39996. aspx [Online].
Google Scholar
[50]
R. E. Pattle, Production of Electric Power by mixing Fresh and Salt Water in the Hydroelectric Pile, Nature 174 (1954) 660.
DOI: 10.1038/174660a0
Google Scholar
[51]
L. Sidney, S. Srinivasa, US 3133132 A Israel, (1964).
Google Scholar
[52]
52. S. Loeb, Osmotic power plants, Science 189 (1975) 654-655.
Google Scholar
[53]
R. Bertani, I. Thain, Geothermal Power Generating Plant CO2 Emission Survey, (http: /www. geothermal-energy. org/documenti/IGA/newsletter/n49. pdf), IGA News (International Geothermal Association) (49) (2002) 1-3.
Google Scholar
[54]
Lewis, Anthony, et al. IPCC: Special Report on Renewable Energy Sources and Climate Change Mitigation, (2011).
Google Scholar
[55]
J. Hanova, H. Dowlatabadi, Strategic GHG reduction through the use of ground source heat pump technology, Environ. Res. Lett. 2(4) (2007) 044001 (8pp) (doi: 10. 1088/1748-9326/2/4/044001).
DOI: 10.1088/1748-9326/2/4/044001
Google Scholar
[56]
I.A. Thain, A Brief History of the Wairakei Geothermal Power Project, Geo-Heat Centre Quarterly Bulletin 19(3) (1998) 1-4.
Google Scholar
[57]
Staufen: Risse: Hoffnung in Staufen: Quellvorgänge lassen nach. badische-zeitung. de. Retrieived in (2014).
Google Scholar
[58]
DLR Portal – TerraSAR-X image of the month: Ground uplift under Staufen's Old Town. Dlr. de . (2009).
Google Scholar
[59]
WECHSELWIRKUNG – Numerische Geotechnik. Wechselwirkung. eu. . Retrieved on 2013-04-24.
Google Scholar
[60]
N. Deichmann, M. Mai, et al. Seismicity Induced by Water Injection for Geothermal Reservoir Stimulation 5 km Below the City of Basel, Switzerland. s. l. : American Geophysical Union (American Geophysical Union), 2007. p.53 (08).
Google Scholar
[61]
http: /www. eia. gov/kids/energy. cfm?page=biomass_home-basics-k. cfm. Energy Kids: Renewable Biomass. [Online].
Google Scholar
[62]
Fuel Ethanol Production: GSP Systems Biology Research. s. l. : U.S. Department of Energy Office of Science, (2010).
Google Scholar
[63]
Breaking the Biological Barriers to Cellulosic Ethanol: A Joint Research Agenda. (2006).
Google Scholar
[64]
G. Liu, E. D. Larson, R. H. Williams, T. G. Kreutz, X. Guo, Making fischer-tropsch fuels and electricity from coal and biomass: Performance and cost analysis, Energy & Fuels 25 (2011) 415-437.
DOI: 10.1021/ef101184e
Google Scholar
[65]
A.K. Rajvanshi, Biomass Gasification, in: D. Yogi Goswami (Eds. ), Alternative Energy in Agriculture, Vol-II, CRC Press, 1986, pp.83-102.
Google Scholar
[66]
A. Shrotri, A. Tanksale, J.N. Beltramini, H. Gurav, S.V. Chilukuri, Conversion of cellulose to polyols over promoted nickel catalysts, Catal. Sci. Technol. 2 (2012) 1852-1858.
DOI: 10.1039/c2cy20119d
Google Scholar
[67]
H. Kobayashi, M. Yabushita, T. Komanoya, K. Hara, I. Fujita, A. Fukuoka, High-Yielding One-Pot Synthesis of Glucose from Cellulose Using Simple Activated Carbons and Trace Hydrochloric Acid, ACS Catalysis 3(4) (2013) 581-587.
DOI: 10.1021/cs300845f
Google Scholar
[68]
J.N. Chheda, Y. Román-Leshkov, J.A. Dumesic, Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono- and poly-saccharides, Green Chem. 9 (2007) 342-350.
DOI: 10.1039/b611568c
Google Scholar
[69]
G.W. Huber, S. Iborra, A. Corma, Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering, Chem. Rev. Vol. 106 (2006) 4044-4098.
DOI: 10.1021/cr068360d
Google Scholar
[70]
A. -L. Marshall, P.J. Alaimo, Useful Products from Complex Starting Materials: Common Chemicals from Biomass Feedstocks, Chem. Eur. J. 16(17) (2010) 4970-4980.
DOI: 10.1002/chem.200903028
Google Scholar
[71]
Biomass Energy Center. http: /www. biomassenergycentre. org. uk/portal/page?_pageid=75, 15179&_dad=portal&_ schema=PORTAL. [Online] www. direct. gov. uk.
Google Scholar
[72]
J. Zhang, K.R. Smith, Household Air Pollution from Coal and Biomass Fuels in China: Measurements, Health Impacts, and Interventions, Environ. Health Perspect. 115(6) (2007) 848-855.
DOI: 10.1289/ehp.9479
Google Scholar