Hydrogenated Amorphous Silicon-Based Thin Film Solar Cell: Optical, Electrical and Structural Properties

Article Preview

Abstract:

Hydrogenated amorphous silicon (a-Si:H) has been developed as an important materials in thin film-based photovoltaic technologies because of considerable cost reduction as a result of low material consumption and low-temperature process. Among the materials used for thin film solar cells, amorphous silicon is the most important material in the commercial production. Despite of these benefits, the efficiency limit for a single band gap thin film based solar cell predicted by Shockley and Queisser (i.e. ~31%) has become a matter of challenge for current research community. Considering the thermodynamic behavior of a single threshold absorber in generating electricity from solar irradiance, this limit seems inevitable, and thus a tremendous investigation is now being carried out in different dimensions such as hot carrier generation, rainbow solar cell, multiple exciton generation, multiband absorber etc. Nonetheless, so far reported efficiency (ηlab~12%) provide enough room to improve and take challenge to reach to the highest value for a-Si:H based solar cell design. Further to improve architectural design as well as engineer the materials, it is indispensable to understand the optical, electrical and structural properties of aSi:H as an active layer. Here in this article, an attempt was taken into account to focus on such characteristics that affect the overall cell efficiency.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

59-64

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N.F. Mott, E.A. Davis, Electronic Processes in Noncrystalline Materials, 2nd ed., Clarendon Press, Oxford345.

Google Scholar

[2] R.A. Street, Hydrogenated Amorphous Silicon, Cambridge University Press, Cambridge, (1991).

Google Scholar

[3] Veprek, V. Maracek, The preparation of thin layers of Ge and Si by chemical hydrogen plasma transport, Solid State Electron. 11 (1968) 683-684.

DOI: 10.1016/0038-1101(68)90071-3

Google Scholar

[4] R.C. Chittick, J.H. Alexander, H.F. Sterling, The preparation and properties of amorphous silicon, Journal of Electrochemical Society 116 (1969) 77-81.

DOI: 10.1149/1.2411779

Google Scholar

[5] W.E. Spear, P.G. LeComber, Substitutional doping of amorphous silicon, Solid State Commun. 17 (1975) 1193-1196.

DOI: 10.1016/0038-1098(75)90284-7

Google Scholar

[6] Y. Kuwano, T. Imai, M. Ohnishi, S. Nakano, A horizontal cascade type amorphous Si photovoltaic cell module, in: Proceedings of the 14th IEEE PVSC (1980) 1408-1409.

Google Scholar

[7] A. Madan, S.R. Ovshinsky, E. Benn, Electrical and optical properties of amorphous Si: F: H alloys, Philos. Mag. B 40 (1979) 259-277.

DOI: 10.1080/01418637908227166

Google Scholar

[8] R.E.I. Schropp, R. Carius, G. Beaucarne, Amorphous silicon, microcrystalline silicon, and thin-film polycrystalline silicon solar cells, MRS Bull. 32 (2007) 219-224.

DOI: 10.1557/mrs2007.25

Google Scholar

[9] R. Santbergen, R.J.C. van Zolinge, The absorption factor of crystalline silicon PV cells: A numerical and experimental study, Sol. Energy Mater. Sol. Cell 92 (2007) 432-444.

DOI: 10.1016/j.solmat.2007.10.005

Google Scholar

[10] C. Strumpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Svrcek, C. del Canizo, I. Tobias, Modifying the solar spectrum to enhance silicon solar cell efficiency - An overview of available materials, Energy Mater. Sol. Cell 91 (2007).

DOI: 10.1016/j.solmat.2006.09.003

Google Scholar

[11] A. Matsuda, Thin-Film Silicon-Growth Process and Solar Cell Application, Jpn. J. Appl. Phys. 43 (2004) 7909-7920.

DOI: 10.1143/jjap.43.7909

Google Scholar

[12] J. Mahrholz, S. Shikolenko, B. Szyszka, T. Jung, Deposition of Amorphous Silicon Films by Gas Flow Sputtering (GFS), 24th Europ. Photovol. Sol. Energy Conf., 3BV. 4. 46 (2009) 2879-2883.

Google Scholar

[13] H. Chatham, P. Bhat, A. Benson, C. Matovich, High-efficiency amorphous silicon p-i-n solar cells deposited from disilane at rates up to 2 nm/s using VHF discharges, J. Non-Cryst. Sol. 115 (1989) 201-203.

DOI: 10.1016/0022-3093(89)90404-3

Google Scholar

[14] Y. Ziegler, V. Daudrix, C. Droz, R. Platz, N. Wyrsch, A. Shah, More stable low gap a-Si: H layers deposited by PE-CVD at moderately high temperature with hydrogen dilution, Sol. Energy Mater. Sol. Cells 66 (2001) 413-419.

DOI: 10.1016/s0927-0248(00)00202-6

Google Scholar

[15] X. Xu, J. Yang, S. Guha, Hydrogen dilution effects on a-Si: H and a-SiGe: H materials properties and solar cell performance, J. Non-Crys. Solids 198-200 (1996) 1113-1116.

DOI: 10.1016/0022-3093(95)00657-5

Google Scholar

[16] M. Vanecek, A. Poruba, Z. Remes, N. Beck, M. Nesladek, Optical properties of microcrystalline materials, J. Non-Cryst. Solids 227-230 (1998) 967-972.

DOI: 10.1016/s0022-3093(98)00202-6

Google Scholar

[17] M. Zeman, Thin-Film Silicon PV Technology, J. Elect. Eng. 61 (2010) 271-276.

Google Scholar

[18] N.A. Bakr, A.M. Funde, V.S. Waman, M.M. Kamble, R.R. Hawaldar, D.P. Amalnerkar, S.W. Gosav, S.R. Jadkar, Determination of the optical parameters of a-Si: H thin films deposited by hot wire-chemical vapour deposition technique using transmission spectrum only, Pramana–J. Phys. 76 (2011).

DOI: 10.1007/s12043-011-0024-4

Google Scholar

[19] J. Tauc, R. Grigorovici, A. Vancu, Optical Properties and Electronic Structure of Amorphous Germanium, Phys. Stat. Sol. 15 (1966) 627-637.

DOI: 10.1002/pssb.19660150224

Google Scholar

[20] M. Vanecek, J. Kocka, J. Stuchlık, Z. Kozısek, O. Stika, A. Trıska, Density of the gap states in undoped and doped glow discharge a-Si: H, Solar Energy Mater. 8 (1983) 411-423.

Google Scholar

[21] W.B. Jackson, N.M. Amer, A.C. Boccara, D. Fournier, Photothermal deflection spectroscopy and detection, Appl. Opt. 20 (1981) 1333-1444.

DOI: 10.1364/ao.20.001333

Google Scholar

[22] J. Holovsky, A. Poruba, A. Purkrt, Z. Remes, M. Vanecek, Comparison of photocurrent spectra measured by FTPS and CPM for amorphous silicon layers and solar cells, J. Non-Crys. Solids 354 (2008) 2167-2170.

DOI: 10.1016/j.jnoncrysol.2007.09.106

Google Scholar

[23] J. Poortmans, V. Arkhipov, Thin film solar cells: fabrication, characterization and applications, John Wiley and Sons, Chichester, England, (2006).

DOI: 10.1002/0470091282

Google Scholar

[24] T. Fujibayashi, M. Kondo, In situ Auger electron spectroscopy studies of the growth of p-type microcrystalline silicon films on ZnO-coated glass substrates for microcrystalline silicon p-i-n solar cells, Appl. Phys. Lett. 87 (2005).

DOI: 10.1063/1.2135883

Google Scholar

[25] H. Liang, R.G. Gordon, Atmospheric pressure chemical vapor deposition of transparent conducting films of fluorine doped zinc oxide and their application to amorphous silicon solar cells, J. Mater. Sci. 42 (2007) 6388-6399.

DOI: 10.1007/s10853-006-1255-5

Google Scholar

[26] C. Modanese, M.D. Sabatino, A. Soiland, L. Arnberg, Relationship between net doping density and resistivity of compensated mc-Si ingots, Phys. Status Solidi C 8 (2011) 713-716.

DOI: 10.1002/pssc.201000210

Google Scholar

[27] M. Goerlitzer, N. Beck, P. Torres, J. Meier, N. Wyrsch, A. Shah, Ambipolar diffusion length and photoconductivity measurements on midgap, hydrogenated microcrystalline silicon, J. Appl. Phys. 80 (1996) 5111-5115.

DOI: 10.1063/1.363491

Google Scholar

[28] W. Beyer, B. Hoheisel, Photoconductivity and dark conductivity of hydrogenated amorphous silicon, Solid State Commun. 47 (1983) 573-576.

DOI: 10.1016/0038-1098(83)90502-1

Google Scholar

[29] D. Wagner, P. Irsigler, D. J. Dunstani, Photoconductivity measurements in a-Si: H by frequency-resolved spectroscopy, J. Phys. C: Solid State Phys. 17 (1984) 6793-6799.

DOI: 10.1088/0022-3719/17/36/030

Google Scholar

[30] M. Garin, U. Rau, W. Brendle, I. Martin, R. Alcubilla, Characterization of a-Si: H∕ c-Si interfaces by effective-lifetime measurements, J. App. Phys. 98 (2005) 093711-1-093711-9.

DOI: 10.1063/1.2128047

Google Scholar

[31] L. Feng, M.Z. Quan, M.X. Jie, L. Peng, Y.Z. Shan, H. Bo, Influence of surface passivation on the minority carrier lifetime, Fe-B pair density and recombination center concentration, Chinese Sci. Bull. 55 (2010) 1828-1833.

DOI: 10.1007/s11434-009-3687-1

Google Scholar

[32] Y. Tang, C. Zhou, W. Wang, Influence of intrinsic lifetime on silicon solar cell efficiencies, Proc. of ISES World Congress 4 (2009) 1180-1184.

DOI: 10.1007/978-3-540-75997-3_235

Google Scholar

[33] D.V. Gestel, I. Gordon, J. Poortmans, EBIC investigation of the influence of hydrogen passivation on thin-film polycrystalline silicon solar cells obtained by aluminium induced crystallization and epitaxy, Solid State Phenomena 156-158 (2010).

DOI: 10.4028/www.scientific.net/ssp.156-158.413

Google Scholar

[34] J. A. Schmidt, C. Longeaud, Analysis of the steady-state photocarrier grating method for the determination of the density of states in semiconductors, Phys. Rev. B 71 (2005) 125208-125220.

DOI: 10.1103/physrevb.71.125208

Google Scholar

[35] A. Shah, P. Torres, R. Tscharner, N. Wyrsch and H. Keppner, Photovoltaic technology: the case for thin-film solar cells, Science 285 (1999) 692-698.

DOI: 10.1126/science.285.5428.692

Google Scholar

[36] I.A.S. Carvalho, R.L. Ribeiro, E. Muniz, E. Borba, J.R.T. Branco, A ftir, Raman and SEM-EBSD-EDS microstructure characterization of plasma thermally sprayed silicon sheet for low cost solar cells substrate, IEEE Xplore 978 (2009) 001461-001466.

DOI: 10.1109/pvsc.2009.5411325

Google Scholar

[37] D. Chandan, Effects of substrate temperature on structural properties of undoped silicon thin films, J. Appl. Phys. 91 (2002) 9401-9407.

DOI: 10.1063/1.1474611

Google Scholar

[38] M. Netrvalova, L. Prusakova, J. Mullerova, P. Sutta, Optical properties of amorphous hydrogenated and microcrystalline silicon films prepared by plasma enhanced chemical vapor deposition and re-crystallized at moderate temperatures Phys. Status Solidi C 8 (2011).

DOI: 10.1002/pssc.201084094

Google Scholar