[1]
N.F. Mott, E.A. Davis, Electronic Processes in Noncrystalline Materials, 2nd ed., Clarendon Press, Oxford345.
Google Scholar
[2]
R.A. Street, Hydrogenated Amorphous Silicon, Cambridge University Press, Cambridge, (1991).
Google Scholar
[3]
Veprek, V. Maracek, The preparation of thin layers of Ge and Si by chemical hydrogen plasma transport, Solid State Electron. 11 (1968) 683-684.
DOI: 10.1016/0038-1101(68)90071-3
Google Scholar
[4]
R.C. Chittick, J.H. Alexander, H.F. Sterling, The preparation and properties of amorphous silicon, Journal of Electrochemical Society 116 (1969) 77-81.
DOI: 10.1149/1.2411779
Google Scholar
[5]
W.E. Spear, P.G. LeComber, Substitutional doping of amorphous silicon, Solid State Commun. 17 (1975) 1193-1196.
DOI: 10.1016/0038-1098(75)90284-7
Google Scholar
[6]
Y. Kuwano, T. Imai, M. Ohnishi, S. Nakano, A horizontal cascade type amorphous Si photovoltaic cell module, in: Proceedings of the 14th IEEE PVSC (1980) 1408-1409.
Google Scholar
[7]
A. Madan, S.R. Ovshinsky, E. Benn, Electrical and optical properties of amorphous Si: F: H alloys, Philos. Mag. B 40 (1979) 259-277.
DOI: 10.1080/01418637908227166
Google Scholar
[8]
R.E.I. Schropp, R. Carius, G. Beaucarne, Amorphous silicon, microcrystalline silicon, and thin-film polycrystalline silicon solar cells, MRS Bull. 32 (2007) 219-224.
DOI: 10.1557/mrs2007.25
Google Scholar
[9]
R. Santbergen, R.J.C. van Zolinge, The absorption factor of crystalline silicon PV cells: A numerical and experimental study, Sol. Energy Mater. Sol. Cell 92 (2007) 432-444.
DOI: 10.1016/j.solmat.2007.10.005
Google Scholar
[10]
C. Strumpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Svrcek, C. del Canizo, I. Tobias, Modifying the solar spectrum to enhance silicon solar cell efficiency - An overview of available materials, Energy Mater. Sol. Cell 91 (2007).
DOI: 10.1016/j.solmat.2006.09.003
Google Scholar
[11]
A. Matsuda, Thin-Film Silicon-Growth Process and Solar Cell Application, Jpn. J. Appl. Phys. 43 (2004) 7909-7920.
DOI: 10.1143/jjap.43.7909
Google Scholar
[12]
J. Mahrholz, S. Shikolenko, B. Szyszka, T. Jung, Deposition of Amorphous Silicon Films by Gas Flow Sputtering (GFS), 24th Europ. Photovol. Sol. Energy Conf., 3BV. 4. 46 (2009) 2879-2883.
Google Scholar
[13]
H. Chatham, P. Bhat, A. Benson, C. Matovich, High-efficiency amorphous silicon p-i-n solar cells deposited from disilane at rates up to 2 nm/s using VHF discharges, J. Non-Cryst. Sol. 115 (1989) 201-203.
DOI: 10.1016/0022-3093(89)90404-3
Google Scholar
[14]
Y. Ziegler, V. Daudrix, C. Droz, R. Platz, N. Wyrsch, A. Shah, More stable low gap a-Si: H layers deposited by PE-CVD at moderately high temperature with hydrogen dilution, Sol. Energy Mater. Sol. Cells 66 (2001) 413-419.
DOI: 10.1016/s0927-0248(00)00202-6
Google Scholar
[15]
X. Xu, J. Yang, S. Guha, Hydrogen dilution effects on a-Si: H and a-SiGe: H materials properties and solar cell performance, J. Non-Crys. Solids 198-200 (1996) 1113-1116.
DOI: 10.1016/0022-3093(95)00657-5
Google Scholar
[16]
M. Vanecek, A. Poruba, Z. Remes, N. Beck, M. Nesladek, Optical properties of microcrystalline materials, J. Non-Cryst. Solids 227-230 (1998) 967-972.
DOI: 10.1016/s0022-3093(98)00202-6
Google Scholar
[17]
M. Zeman, Thin-Film Silicon PV Technology, J. Elect. Eng. 61 (2010) 271-276.
Google Scholar
[18]
N.A. Bakr, A.M. Funde, V.S. Waman, M.M. Kamble, R.R. Hawaldar, D.P. Amalnerkar, S.W. Gosav, S.R. Jadkar, Determination of the optical parameters of a-Si: H thin films deposited by hot wire-chemical vapour deposition technique using transmission spectrum only, Pramana–J. Phys. 76 (2011).
DOI: 10.1007/s12043-011-0024-4
Google Scholar
[19]
J. Tauc, R. Grigorovici, A. Vancu, Optical Properties and Electronic Structure of Amorphous Germanium, Phys. Stat. Sol. 15 (1966) 627-637.
DOI: 10.1002/pssb.19660150224
Google Scholar
[20]
M. Vanecek, J. Kocka, J. Stuchlık, Z. Kozısek, O. Stika, A. Trıska, Density of the gap states in undoped and doped glow discharge a-Si: H, Solar Energy Mater. 8 (1983) 411-423.
Google Scholar
[21]
W.B. Jackson, N.M. Amer, A.C. Boccara, D. Fournier, Photothermal deflection spectroscopy and detection, Appl. Opt. 20 (1981) 1333-1444.
DOI: 10.1364/ao.20.001333
Google Scholar
[22]
J. Holovsky, A. Poruba, A. Purkrt, Z. Remes, M. Vanecek, Comparison of photocurrent spectra measured by FTPS and CPM for amorphous silicon layers and solar cells, J. Non-Crys. Solids 354 (2008) 2167-2170.
DOI: 10.1016/j.jnoncrysol.2007.09.106
Google Scholar
[23]
J. Poortmans, V. Arkhipov, Thin film solar cells: fabrication, characterization and applications, John Wiley and Sons, Chichester, England, (2006).
DOI: 10.1002/0470091282
Google Scholar
[24]
T. Fujibayashi, M. Kondo, In situ Auger electron spectroscopy studies of the growth of p-type microcrystalline silicon films on ZnO-coated glass substrates for microcrystalline silicon p-i-n solar cells, Appl. Phys. Lett. 87 (2005).
DOI: 10.1063/1.2135883
Google Scholar
[25]
H. Liang, R.G. Gordon, Atmospheric pressure chemical vapor deposition of transparent conducting films of fluorine doped zinc oxide and their application to amorphous silicon solar cells, J. Mater. Sci. 42 (2007) 6388-6399.
DOI: 10.1007/s10853-006-1255-5
Google Scholar
[26]
C. Modanese, M.D. Sabatino, A. Soiland, L. Arnberg, Relationship between net doping density and resistivity of compensated mc-Si ingots, Phys. Status Solidi C 8 (2011) 713-716.
DOI: 10.1002/pssc.201000210
Google Scholar
[27]
M. Goerlitzer, N. Beck, P. Torres, J. Meier, N. Wyrsch, A. Shah, Ambipolar diffusion length and photoconductivity measurements on midgap, hydrogenated microcrystalline silicon, J. Appl. Phys. 80 (1996) 5111-5115.
DOI: 10.1063/1.363491
Google Scholar
[28]
W. Beyer, B. Hoheisel, Photoconductivity and dark conductivity of hydrogenated amorphous silicon, Solid State Commun. 47 (1983) 573-576.
DOI: 10.1016/0038-1098(83)90502-1
Google Scholar
[29]
D. Wagner, P. Irsigler, D. J. Dunstani, Photoconductivity measurements in a-Si: H by frequency-resolved spectroscopy, J. Phys. C: Solid State Phys. 17 (1984) 6793-6799.
DOI: 10.1088/0022-3719/17/36/030
Google Scholar
[30]
M. Garin, U. Rau, W. Brendle, I. Martin, R. Alcubilla, Characterization of a-Si: H∕ c-Si interfaces by effective-lifetime measurements, J. App. Phys. 98 (2005) 093711-1-093711-9.
DOI: 10.1063/1.2128047
Google Scholar
[31]
L. Feng, M.Z. Quan, M.X. Jie, L. Peng, Y.Z. Shan, H. Bo, Influence of surface passivation on the minority carrier lifetime, Fe-B pair density and recombination center concentration, Chinese Sci. Bull. 55 (2010) 1828-1833.
DOI: 10.1007/s11434-009-3687-1
Google Scholar
[32]
Y. Tang, C. Zhou, W. Wang, Influence of intrinsic lifetime on silicon solar cell efficiencies, Proc. of ISES World Congress 4 (2009) 1180-1184.
DOI: 10.1007/978-3-540-75997-3_235
Google Scholar
[33]
D.V. Gestel, I. Gordon, J. Poortmans, EBIC investigation of the influence of hydrogen passivation on thin-film polycrystalline silicon solar cells obtained by aluminium induced crystallization and epitaxy, Solid State Phenomena 156-158 (2010).
DOI: 10.4028/www.scientific.net/ssp.156-158.413
Google Scholar
[34]
J. A. Schmidt, C. Longeaud, Analysis of the steady-state photocarrier grating method for the determination of the density of states in semiconductors, Phys. Rev. B 71 (2005) 125208-125220.
DOI: 10.1103/physrevb.71.125208
Google Scholar
[35]
A. Shah, P. Torres, R. Tscharner, N. Wyrsch and H. Keppner, Photovoltaic technology: the case for thin-film solar cells, Science 285 (1999) 692-698.
DOI: 10.1126/science.285.5428.692
Google Scholar
[36]
I.A.S. Carvalho, R.L. Ribeiro, E. Muniz, E. Borba, J.R.T. Branco, A ftir, Raman and SEM-EBSD-EDS microstructure characterization of plasma thermally sprayed silicon sheet for low cost solar cells substrate, IEEE Xplore 978 (2009) 001461-001466.
DOI: 10.1109/pvsc.2009.5411325
Google Scholar
[37]
D. Chandan, Effects of substrate temperature on structural properties of undoped silicon thin films, J. Appl. Phys. 91 (2002) 9401-9407.
DOI: 10.1063/1.1474611
Google Scholar
[38]
M. Netrvalova, L. Prusakova, J. Mullerova, P. Sutta, Optical properties of amorphous hydrogenated and microcrystalline silicon films prepared by plasma enhanced chemical vapor deposition and re-crystallized at moderate temperatures Phys. Status Solidi C 8 (2011).
DOI: 10.1002/pssc.201084094
Google Scholar