The Dielectric Tunability of Fe-Doped Pb0.3Sr0.7TiO3 Thin Films Prepared by Sol-Gel Method

Article Preview

Abstract:

Fe-doped Pb0.3Sr0.7TiO3 (PST) thin films have been fabricated on Pt/Ti/SiO2/Si substrates with sol–gel method. The structure and surface morphology of Fe-doped PST thin films were investigated as a function of Fe concentration by x-ray diffraction (XRD) and atomic force microscopy (AFM). The dielectric measurements were conducted on metal-insulator-metal capacitors at the frequency from 100 Hz to 1M Hz at room temperature. It’s found that the dielectric constant, dielectric loss and tunability of Fe-doped PST films decreased with the increase of Fe content. The effects of Fe doping on the microstructure, dielectric and tunable properties of thin films were analyzed. Though the undoped PST thin film exhibited the highest dielectric constant of 2011 and the largest tunability of 76%, the 6 mol% Fe doped PST thin films had the highest figure of merit (FOM) of 17.9 for its lowest dielectric loss.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 399-401)

Pages:

958-962

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K.C. Verma, R.K. Kotnala and N.S. Negi, Appl. Phys. A. Vol. 96 (2009), p.1009

Google Scholar

[2] J.F. Shi, J. Liang, S.J. Peng, et al., Solid State Sciences. Vol. 11 (2009), p.433

Google Scholar

[3] K.-T. Kim and C. Kim, II, Journal of Vacuum Science & Technology B. Vol. 22 (2004), p.2615

Google Scholar

[4] M. Jain, S.B. Majumder, R. Guo, et al., Mater. Lett. Vol. 56 (2002), p.692

Google Scholar

[5] Y. Somiya, A.S. Bhalla and L.E. Cross, Int. J. Inorg. Mater. Vol. 3 (2001), p.709

Google Scholar

[6] C. Fragkiadakis, A. Lüker, R.V. Wright, et al., J. Appl. Phys. Vol. 105 (2009), p.061635

Google Scholar

[7] L. Chen, M.R. Shen, L. Fang, et al., Thin Solid Films. Vol. 516 (2008), p.1285

Google Scholar

[8] Y. Lin, X. Chen, S.W. Liu, et al., Appl. Phys. Lett. Vol. 86 (2005), p.142902

Google Scholar

[9] J. Zhai, X. Yao, Z. Xu, et al., J. Cryst. Growth. Vol. 286 (2006), p.37

Google Scholar

[10] H. Xu and M. Shen, Appl. Phys. A. Vol. 84 (2006), p.323

Google Scholar

[11] J. Wang, J. Zhang and X. Yao, J. Alloy. Compd. Vol. 505 (2010), p.783

Google Scholar

[12] J. Cui, G. Dong, Z. Yang, et al., J. Alloy. Compd. Vol. 490 (2010), p.353

Google Scholar

[13] J. Yang, X.J. Meng, M.R. Shen, et al., J. Appl. Phys. Vol. 106 (2009), p.094108

Google Scholar

[14] J. Wang, T. Zhang, J. Xiang, et al., Mater. Chem. Phys. Vol. 108 (2008), p.445

Google Scholar

[15] M.W. Cole, C. Hubbard, E. Ngo, et al., J. Appl. Phys. Vol. 92 (2002), p.475

Google Scholar

[16] K.T. Kim and C.I. Kim, Thin Solid Films. Vol. 472 (2005), p.26

Google Scholar

[17] K. Verma, R. Kotnala, M. Mathpal, et al., Mater. Chem. Phys. Vol. 114 (2009), p.576

Google Scholar

[18] H.J. Chung, S.J. Chung, J.H. Kim, et al., Thin Solid Films. Vol. 394 (2001), p.213

Google Scholar

[19] T. Zhang, J. Wang, B. Zhang, et al., Mater. Res. Bull. Vol. 43 (2008), p.700

Google Scholar

[20] W.T. Chang and L. Sengupta, J. Appl. Phys. Vol. 92 (2002), p.3941

Google Scholar

[21] S.Y. Wang, B.L. Cheng, C. Wang, et al., J. Cryst. Growth. Vol. 259 (2003), p.137

Google Scholar

[22] S.G. Lu, X.H. Zhu, C.L. Mak, et al., Appl. Phys. Lett. Vol. 82 (2003), p.2877

Google Scholar