Defect and Diffusion Forum
Vols. 323-325
Vols. 323-325
Defect and Diffusion Forum
Vol. 322
Vol. 322
Defect and Diffusion Forum
Vol. 321
Vol. 321
Defect and Diffusion Forum
Vols. 319-320
Vols. 319-320
Defect and Diffusion Forum
Vol. 318
Vol. 318
Defect and Diffusion Forum
Vols. 316-317
Vols. 316-317
Defect and Diffusion Forum
Vols. 312-315
Vols. 312-315
Defect and Diffusion Forum
Vol. 311
Vol. 311
Defect and Diffusion Forum
Vols. 309-310
Vols. 309-310
Defect and Diffusion Forum
Vol. 308
Vol. 308
Defect and Diffusion Forum
Vol. 307
Vol. 307
Defect and Diffusion Forum
Vols. 305-306
Vols. 305-306
Defect and Diffusion Forum
Vols. 303-304
Vols. 303-304
Defect and Diffusion Forum Vols. 312-315
Paper Title Page
Abstract: The solid-liquid mass transfer rate at a stack of circular fin surfaces in a bubble column was investigated. A diffusion-controlled dissolution technique of copper in an acidified chromate solution was employed. Variables studied included the number of actively exposed fins ranging from 5 to 20, pertinent physical properties of the solution, and air superficial velocity. Experimental data showed that the rate of the diffusion-controlled mass transfer increases with increasing superficial air velocity and decreases with increasing chromate solution acid concentration. Moreover, at relatively low superficial air velocity, increasing the number of actively exposed fins results into a continuous increase in the mass transfer coefficient. At relatively higher superficial air velocity, however, the mass transfer coefficient decreases in the 5 to 10 range of actively exposed fins and then reverts to increase in the 15 to 20 range.
647
Abstract: The study of influence of Fe and Ti alloying elements in the Ni3Al intermetallic alloy on diffusion feature in Ni/Ni3Al-Me (Me = Fe or Ti) joints was performed using the diffusion couple technique. Four sets of diffusion couples of diverse compositions prepared by means of resistance welding or electron beam welding in vacuum were used. The concentrations profiles and diffusivities of welded Ni/Ni3Al-Fe and Ni/Ni3Al-Ti joints were determined after annealing at 1050°C for 100 hours. The concentration profiles were smoothed using suitable types of polynomials. The Kirkendall voids in the area between the Matano plane and the new interface created after annealing were observed. Metallographic study and qualitative evaluation of voids by means of AFM method revealed different feature of Kirkendall regions in Ni/Ni3Al-Fe couples unlike Ni/Ni3Al-Ti joints.
653
Abstract: A numerical study of the behavior for a finite porous journal bearing lubricated with Newtonian fluid is undertaken considering both thermal and piezo-viscous effects. The modified Reynolds equation is obtained by using the thermo-hydrodynamic aspect to account for the viscous variation versus pressure and temperature where Barus law has been used for the visous formulation. To determine the flow in the porous media, the Darcy’s law has considered. The governing equations were solved numerically using a finite difference approach. Obtained results compared with the case of a thermo-viscous aspect, the piezo-viscous parameter increases the load carrying capacity significantly and improves the characteristics of the journal bearings.
659
Abstract: The design of ventilated glass-glass facades in large buildings seems a promising technology to enhance energy efficient building design. In order to describe the optical and thermal heat transfer mechanism in glass-glass configurations with vertical airflow regimes radiation and conduction models have been developed and validated. The convective heat transfer can be calculated depending on air temperatures and air velocity. But obstructions in the vertical airflow regime (i.e. shading device) with reflective and absorptive properties demand the set-up of a new heat transfer balance. Radiative, conductive, and convective heat transfer coefficients for the heat transfer through glass-glass configuration with internal obstructions were developed. The simulation results were validated with measured data of air temperature regimes and different solar radiation in an existing ventilated double-skin façade. The comparison show very good agreement and give confidence in using the model for further energy analysis of this type of façade.
665
Abstract: Reynolds-averaged Navier–Stokes “RANS” turbulence models (such as k-ε models) are still widely used for engineering applications because of their relatively simplicity and robustness. In fully developed plane channel flow (i.e. the flow between two infinitely large plates), even if available models and near-wall treatments provide adequate mean flow velocities, they fail to predict suitable turbulent kinetic energy “TKE” profiles near walls. TKE is involved in determination of eddy viscosity/diffusivity and could therefore provide inaccurate concentrations and temperatures. In order to improve TKE a User Defined Function “UDF” based on an analytical profile for TKE was developed and implemented in FLUENT. Mean streamwise velocity and TKE profiles were compared to DNS data for friction Reynolds number Reτ = 150. Simulation results for TKE show accurate profiles. Simulation results for horizontal heated channel flows obtained with FLUENT are presented. Numerical results are validated by direct numerical simulation “DNS” data for Reτ = 150.
671
Abstract: The paper is concerned with the thermal properties of cathodic ceramic targets built on the basis of zirconium oxide modified with rare earth metal oxides such as La2O3, Nd2O3, and Gd2O3. The experiments also included the production of the TZ-3Y, TZ-3Y+20mol% coatings (La2O3, Gd2O3) using the EB-PVD method, and characterization of these coatings. Within the temperature range examined (20 to 120oC), the targets that contained rare earth metal oxides appeared to have lower thermal conductivity λ (2.07-1.22 Wm-1K-1) than the TZ-3Y target (3.6-3.05 Wm-1K-1). The present study was a continuation of our earlier experiments devoted to the examinations of zirconium oxide ceramic targets intended for producing refractory, heat-resistant nanocrystalline coatings.
676
Abstract: Two-dimensional (2D) colloidal aggregates of polystyrene microspheres 4 μm were experimentally modeled to study the rearranged mechanisms and compression behaviors at the air-liquid interface. The aggregated models occurred due to the interaction forces between particles. The combination of mechanical testing technique and the digital video microscopy had been developed to quantitatively analyze the compressive deformation of 2D aggregates. When the compressive forces were applied to the cluster, these forces were transmitted trough the aggregated network during compression. Solid-like mechanical properties of 2D aggregated cluster were examined. Deformation mechanisms occurred within the aggregated network which presented the particle rearrangements during yield. Elastic deformation had undergone the compressive elastic stress of the elastic loading. Rearrangement mechanisms found generally were rolling-hinge, sliding mechanisms and tensile failure for a small-scale deformation. Shear failure and stick-slip mechanisms caused a large-scale plastic deformation. However, across the yield point, the tensile failures were dominated. Rearrangement mechanisms of particles affected both elastic and plastic deformations.
682
Abstract: Biopolymers of polyhydroxyalkanoates (PHAs) are produced by pure bacterial strain of Alcaligenes eutrophus TISTR 1095 via batch fermentation using sugarcane juice as a carbon source, and yielded up to 21% (w/w) after recovery process. The PHAs are blended with bio-based materials such as tapioca and corn starch including glycerol and methanol to improve their microstructures. The combination of various plasticizers with PHAs is studied in different ratios. The PHAs and starch are mixed for 3% w/v and 30% w/v in hot chloroform, respectively. The varieties of PHAs to starch solution ratios are situated for casting as of films. The PHAs blended films are characterized by polarized light microscopy, differential scanning calorimetry (DSC) and x-ray diffractometry (XRD). The initial PHAs indicate remarkably crystalline structure with cross-polarized light on optical microscope. Macroscopic scales of their films are very brittle and flexible. However, their microscopic scales present small patches of particular components from each starch. Immiscibility of the blends is gradually increased on adding the starch portions. Additional glycerol shows more strongly interfacial adhesion between starch and PHAs, and methanol produces specifically thin films. Melting transition temperatures of blended films are slightly higher than the biosynthesized PHAs as examined by DSC. Corn starch mixture causes highly brittle films than tapioca mixtures, which indicates poor adhesion between corn starch and the PHAs. This result is correspondent to their highly crystallinity from diffractogram. Microstructural evolution of the blended films is increased slightly crystallinity by the solution casting.
688
Abstract: The aim of the present work is to investigate the effect of pulsation on improving the rate of the diffusion controlled cementation of cadmium ions using reciprocating fixed bed of zinc rings. The kinetics of the cementation reaction was investigated under different conditions of initial concentration of cadmium ions, frequency and amplitude of oscillation (vibration velocity), zinc ring diameter, bed diameter, bed height and temperature. The effect of temperature was found to fit the Arrhenius equation with an activation energy of 7.58 kcal/mole which confirms the diffusion controlled nature of the reaction. A dimensionless correlation in the form of Sh = 6.9 Re0.45 Sc0.33 (Bd/Bh)0.89 was deduced. The industrial application of the obtained results was discussed.
694
Abstract: The aim of the present work is to investigate the effect of gas sparging in improving the performance of a batch electrocoagulation unit used for the treatment of wastewater generated from dyeing industry. Monopolar cylindrical aluminum electrodes were used. Many variables were investigated such as superficial gas velocity, current density, initial dye concentration, area ratio (cathode/anode), time of operation and the effect of adding chemical coagulant as Fe (SO4). The results show that the % dye removal has been increased by a factor ranging from 2.52 to 5.14 by increasing the gas flow rate from 0.4 to 0.8 liter/min, respectively, and that about 93.5% of the dye can be removed within 60 minutes. Also it was found that using gas sparging is more efficient than adding chemical coagulant as ferrous sulphate for the removal of dye from wastewater. The power consumption for the unit was measured for different gas flow rates and different current densities; the results show that lower gas flow rate can improve the economy of the process.
700