Investigating Dislocation Arrays Induced by Seed Scratches during PVT 4H-SiC Crystal Growth Using Synchrotron X-Ray Topography

Article Preview

Abstract:

The influence of seed preparation on crystal defect generation is studied by investigating the effect of damage from surface scratches not completely removed during polishing on the seed crystal on the nucleation and evolution of dislocation arrays. Synchrotron X-ray topography is conducted on several wafers sliced from a PVT-grown 4H-SiC boule. Topographic results in conjunction with ray tracing simulation reveal the generation of TSD/TMD and TED arrays associated with the scratches in the newly grown wafer adjacent to the seed. Configuration transformation of those arrays is observed as these opposite-signed dislocation pairs composing the arrays were affected by the overgrowth of macro-steps when propagating into the newly grown crystal.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] C. Codreanu et al, Mater Sci Semicond Process 3, 137-142 (2000).

Google Scholar

[2] P. G.Neudeck et al, Solid-State Electronics 42(12), 2157-2164 (1998).

Google Scholar

[3] P. Bergmanet al, Mater. Sci. Forum 353-356, 299-302 (2001).

Google Scholar

[4] A. K. Agarwal et al, IEEE Electron Device Lett. 28, 587-589 (2007).

Google Scholar

[5] J. W. Sun et al, Journal of Applied Physics 111(11), 113527 (2012).

Google Scholar

[6] R. Singh and M. Pecht, IEEE Industrial Electronics Magazine, 2, 19-31, (2008).

Google Scholar

[7] Lely, A.J., Darstellung von Einkristallen von Siliziumcarbid und Beherrschung von Art und Menge der eingebauten Verunreinigungen. Ber. Dtsch. Keram. Ges. 32: 229-231(1955).

Google Scholar

[8] D. R. Hamilton, The Growth of Silicon Carbide by Sublimation, in Silicon Carbide, in A High Temperature Semiconductor, J.R. Connor and J. Smilestens, Editors, Oxford: Pergamon. 45-51 (1960).

Google Scholar

[9] V. P. Novikov and V.I. Ionov, Production of Monocrystals of Alpha Silicon Carbide. Growth Crystal 6, 9-21 (1968).

Google Scholar

[10] Y. M. Tairov and V.F. Tsvetkov, Journal of Crystal Growth 43(2), 209-212 (1978).

Google Scholar

[11] X.R. Huang et al, J. Appl. Cryst. 32, 516-524 (1999).

Google Scholar

[12] M. Dudley et al, J. Phys. D: Appl. Phys. 32, A139-A144 (1999).

Google Scholar

[13] T. Zhou et al, MRS Online Proc. Libr. 1494, 121-126 (1999).

Google Scholar

[14] T. Zhou et al, Journal of Elec Materi 43, 838-842 (2014).

Google Scholar

[15] Q. Cheng et al, J. Electron. Mater. 50, 4104-4117 (2021).

Google Scholar

[16] B. Raghothamachar et al, J. Cryst. Growth 544, 125709 (2020).

Google Scholar

[17] H. Peng et al, J. Appl. Cryst. 55, 544-550 (2022).

Google Scholar

[18] Q. Cheng et al, Defect and Diffusion Forum 426, 57-64 (2023).

Google Scholar

[19] Q. Cheng et al, Materials Science in Semiconductor Processing 174, 108207 (2024).

Google Scholar

[20] M. R. Surowiec and B. K. Tanner, Philos. mag., A 55:6, 791-805 (1987).

Google Scholar

[21] H. Wang, Studies of Growth Mechanism and Defect Origins in 4H-Silicon Carbide Substrates and Homoepitaxial Layers. 2014. Stony Brook University, PhD dissertation.

Google Scholar

[22] K. Kamei et al, Mater. Sci. Forum, 717-720, 45-48 (2012).

Google Scholar

[23] T. Ailihumaer et al, J. Electron. Mater., 50, 3258-3265 (2021).

Google Scholar

[24] Y Chen et al, Mater. Sci. Forum 556-557, 231-234 (2007).

Google Scholar