Analysis of Lattice Damage in 4H-SiC Epiwafers Implanted with High Energy Al Ions at Elevated Temperatures

Article Preview

Abstract:

4H-SiC wafers with 12 µm epilayers were blanket implanted to a depth of 12 µm with 5 x 1016 cm-3 Al ions via Tandem Van de Graaff accelerator located at Brookhaven National Laboratory with energy range of 13.8 to 65.7 MeV at room temperature, 300 °C and 600 °C. High resolution X-ray diffraction measurements reveal the implanted layers are characterized by tensile strains. However, the dynamic annealing process reduces the level of tensile strains as the temperature of implantation is increased. Analysis indicates that the implant temperature of 600 °C is not sufficient to minimize lattice damage due to implantation and a higher implantation temperature will be required. This preliminary experiment will guide the optimization of implantation conditions for fabricating superjunction devices.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] J. Guo, Y. Yang, B. Raghothamachar, T. Kim, M. Dudley, J. Kim, J. Cryst. Growth 480 (2017) 119-125.

Google Scholar

[2] T. Liu, S. Hu, J. Wang, G. Guo, J. Luo, Y. Wang, J. Guo and Y. Huo, IEEE Access, 7 145118-145123. (2019)

DOI: 10.1109/access.2019.2944991

Google Scholar

[3] P. Thieberger, C. Carlson, D. Steski, R. Ghandi, A. Bolotnikov, D. Lilienfeld, P. Losee, Nucl. Instrum. Methods Phys. Res. B: Beam Interact. Mater. At. 442 36-40. (2019)

DOI: 10.1016/j.nimb.2019.01.016

Google Scholar

[4] R. Ghandi, C. Hitchcock, S. Kennerly, ECS Transactions 104 67 (2021)

Google Scholar

[5] R. Ghandi, A. Bolotnikov, S. Kennerly, C. Hitchcock, P.-m. Tang, T.P. Chow, 2020 32nd International Symposium on Power Semiconductor Devices and ICs (ISPSD), IEEE, 126-129 (2020)

DOI: 10.1109/ispsd46842.2020.9170171

Google Scholar

[6] R. Ghandi, C. Hitchcock, S. Kennerly, M. Torky and T. P. Chow, 2022 International Electron Devices Meeting (IEDM), p.9.1.1-9.1.4 (San Francisco, CA, USA, 2022)

DOI: 10.1109/iedm45625.2022.10019368

Google Scholar

[7] Z. Chen, H. Peng, Y. Liu, Q. Cheng, S. Hu, B. Raghothamachar, M. Dudley, R. Ghandi, S. Kennerly and P. Thieberger, Materials Science Forum 1062, 361-365 (2022)

DOI: 10.4028/p-m7sftq

Google Scholar

[8] Z. Chen, Y. Liu, H. Peng, Q. Cheng, S. Hu, B. Raghothamachar, M. Dudley, R. Ghandi, S. Kennerly and P. Thieberger, ECS J. Solid State Sci. Technol. 11 065003 (2022)

DOI: 10.1149/2162-8777/ac7351

Google Scholar

[9] A. Yu. Kuznetsov, J. Wong-Leung, A. Hallen, C. Jagadish, and B. G. Svensson, Journal of Applied Physics 94, 7112 (2003)

Google Scholar

[10] S. Mancini, S. Jang, Z. Chen, D. Kim, Y. Liu, B. Raghothamachar, M. Kang, A. Agarwal, N. Mahadik, R. Stahlbush, M. Dudley, W. Sung, proceeding of 2022 IEEE International Reliability Physics Symposium (IRPS) (2022)

DOI: 10.1109/irps48227.2022.9764538

Google Scholar

[11] Z.C. Feng, S.C. Lien, J.H. Zhao, X.W. Sun and W. Lu, Thin Solid Films 516.16 (2008) 5217-5222.

DOI: 10.1016/j.tsf.2007.07.094

Google Scholar

[12] M. Rawski, J. Żuk, M. Kulik, A. Droździel, L. Lin, S. Prucnal, K. Pyszniak and M. Turek, Proceedings of the VIII International Conference ION (2010)

Google Scholar