[1]
R. Liu et al., "Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment," Chin. Chem. Lett., vol. 34, no. 2, p.107518, Feb. 2023.
DOI: 10.1016/j.cclet.2022.05.032
Google Scholar
[2]
A. Mushtaq et al., "Magnetic Hydroxyapatite Nanocomposites: The Advances from Synthesis to Biomedical Applications," Mater. Des., vol. 197, p.109269, Jan. 2021.
DOI: 10.1016/j.matdes.2020.109269
Google Scholar
[3]
R. Rahimah, A. Fadli, Y. Yelmida, N. Nurfajriani, and Z. Zakwan, "Synthesis and Characterization Nanomagnetite by Co-precipitation," Indones. J. Chem. Sci. Technol. IJCST, vol. 2, no. 2, p.90, Jul. 2019.
DOI: 10.24114/ijcst.v2i2.13995
Google Scholar
[4]
Q. Zhang, J. Liu, K. Yuan, Z. Zhang, X. Zhang, and X. Fang, "A Multi-controlled Drug Delivery System Based on Magnetic Mesoporous Fe3O4 Nanopaticles and a Phase Change Material for Cancer Thermo-chemotherapy," Nanotechnology, vol. 28, no. 40, p.405101, Oct. 2017.
DOI: 10.1088/1361-6528/aa883f
Google Scholar
[5]
Wahajuddin and Arora, "Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers," Int. J. Nanomedicine, p.3445, Jul. 2012.
DOI: 10.2147/IJN.S30320
Google Scholar
[6]
E. Hendrian, "Green synthesis of magnetic Fe3O4 nanoparticles (MNPs) using plant extract and Biomedicine Applications: Targeted Anticancer Drug Delivery System," Drug Deliv. Syst., 2023.
DOI: 10.26740/ifi.v12n2.p30-46
Google Scholar
[7]
Z. Yang, W. Xu, M. Ji, A. Xie, Y. Shen, and M. Zhu, "A pH-Sensitive Composite with Controlled Multistage Drug Release for Synergetic Photothermal Therapy and Chemotherapy," Eur J Inorg Chem, 2017.
DOI: 10.1002/ejic.201701081
Google Scholar
[8]
R. Rahimah, A. Fadli, Y. Yelmida, N. Nurfajriani, and Z. Zakwan, "Synthesis and Characterization Nanomagnetite by Co-precipitation," Indones. J. Chem. Sci. Technol. IJCST, vol. 2, no. 2, p.90, Jul. 2019.
DOI: 10.24114/ijcst.v2i2.13995
Google Scholar
[9]
E. P. Hernandes, D. Lazarin-Bidóia, R. D. Bini, C. V. Nakamura, L. F. Cótica, and S. De Oliveira Silva Lautenschlager, "Doxorubicin-Loaded Iron Oxide Nanoparticles Induce Oxidative Stress and Cell Cycle Arrest in Breast Cancer Cells," Antioxidants, vol. 12, no. 2, p.237, Jan. 2023.
DOI: 10.3390/antiox12020237
Google Scholar
[10]
M. D. Nguyen, H.-V. Tran, S. Xu, and T. R. Lee, "Fe3O4 Nanoparticles: Structures, Synthesis, Magnetic Properties, Surface Functionalization, and Emerging Applications," Appl. Sci., vol. 11, no. 23, p.11301, Nov. 2021.
DOI: 10.3390/app112311301
Google Scholar
[11]
S. Mondal et al., "Hydroxyapatite: A journey from biomaterials to advanced functional materials," Adv. Colloid Interface Sci., vol. 321, p.103013, Nov. 2023.
DOI: 10.1016/j.cis.2023.103013
Google Scholar
[12]
M. Du, J. Chen, K. Liu, H. Xing, and C. Song, "Recent advances in biomedical engineering of nano-hydroxyapatite including dentistry, cancer treatment and bone repair," Compos. Part B Eng., vol. 215, p.108790, Jun. 2021.
DOI: 10.1016/j.compositesb.2021.108790
Google Scholar
[13]
H. Peng, M. Wang, C. Hu, and J. Guo, "A New Type of MgFe2O4@CuS-APTES Nanocarrier for Magnetic Targeting and Light-Microwave Dual Controlled Drug Release," Int. J. Nanomedicine, vol. Volume 15, p.8783–8802, Nov. 2020.
DOI: 10.2147/IJN.S267614
Google Scholar
[14]
K. Aran, L. A. Sasso, N. Kamdar, and J. D. Zahn, "Irreversible, Direct Bonding of Nanoporous Polymer Membranes to PDMS or Glass Microdevices," Lab. Chip, vol. 10, no. 5, p.548, 2010.
DOI: 10.1039/b924816a
Google Scholar
[15]
H. Cao, Y. Yang, X. Chen, and Z. Shao, "Intelligent Janus Nanoparticles for Intracellular Real-time Monitoring of Dual Drug Release," Nanoscale, vol. 8, no. 12, p.6754–6760, 2016.
DOI: 10.1039/C6NR00987E
Google Scholar
[16]
C. Wells et al., "Engineering of Mesoporous Silica Coated Carbon-Based Materials Optimized for an Ultrahigh Doxorubicin Payload and a Drug Release Activated by pH, T , and NIR-light," Adv. Funct. Mater., vol. 28, no. 17, p.1706996, Apr. 2018.
DOI: 10.1002/adfm.201706996
Google Scholar
[17]
A. Taufiq et al., "Synthesis of magnetite/silica nanocomposites from natural sand to create a drug delivery vehicle," Heliyon, vol. 6, no. 4, p. e03784, Apr. 2020.
DOI: 10.1016/j.heliyon.2020.e03784
Google Scholar
[18]
R. Utami, A. Taufiq, S. Sunaryono, and A. Nikmah, "Preliminary studies on magnetite/HA/chitosan nanocomposite: Nanostructure and drug loading characteristics," presented at the THE 4TH INTERNATIONAL CONFERENCE ON LIFE SCIENCE AND TECHNOLOGY (ICoLiST), Malang, Indonesia, 2023, p.020035.
DOI: 10.1063/5.0112185
Google Scholar
[19]
M. Osial et al., "One-pot synthesis of magnetic hydroxyapatite (SPION/HAp) for 5-fluorouracil delivery and magnetic hyperthermia," J. Nanoparticle Res., vol. 26, no. 1, p.7, Jan. 2024.
DOI: 10.1007/s11051-023-05916-x
Google Scholar
[20]
Y. A. Hariyanto, A. Taufiq, Sunaryono, and S. Soontaranon, "Investigation on the Three-Dimensional Nanostructure and the Optical Properties of Hydroxyapatite/Magnetite Nanocomposites Prepared from Natural Resources," J. Korean Phys. Soc., vol. 75, no. 9, p.708–715, Nov. 2019.
DOI: 10.3938/jkps.75.708
Google Scholar
[21]
M. Amano, H. Shibata, and K. Hashimoto, "Crystal growth of HAp on plate-like ZnO particles using APTES as surface treatment agents," J. Asian Ceram. Soc., vol. 11, no. 1, p.53–61, Jan. 2023.
DOI: 10.1080/21870764.2022.2148386
Google Scholar
[22]
S. Mandal and K. Chaudhuri, "Magnetic Core-Shell Nanoparticles for Biomedical Applications," in Complex Magnetic Nanostructures, S. K. Sharma, Ed., Cham: Springer International Publishing, 2017, p.425–453.
DOI: 10.1007/978-3-319-52087-2_12
Google Scholar
[23]
Y. Shi, A. Wan, Y. Shi, Y. Zhang, and Y. Chen, "Experimental and Mathematical Studies on the Drug Release Properties of Aspirin Loaded Chitosan Nanoparticles," BioMed Res. Int., vol. 2014, p.1–8, 2014.
DOI: 10.1155/2014/613619
Google Scholar
[24]
A. Taufiq et al., "Synthesis of Magnetite/Silica Nanocomposites from Natural Sand to Create a Drug Delivery Vehicle," Heliyon, vol. 6, no. 4, p. e03784, Apr. 2020.
DOI: 10.1016/j.heliyon.2020.e03784
Google Scholar
[25]
Kusnunnahari, A. Taufiq, A. Hidayat, R. E. Saputro, and N. Mufti, "Preparation and Characterization of Magnetite/PEG Nanoparticles Combined with Curcumin for Drug Delivery Application," Key Eng. Mater., vol. 855, p.299–307, Jul. 2020.
DOI: 10.4028/www.scientific.net/KEM.855.299
Google Scholar
[26]
K. U. Henggu, B. Ibrahim, and P. Suptijah, "Hydroxyapatite Production from Cuttlebone as Bone Scaffold Material Preparations," J. Pengolah. Has. Perikan. Indones., vol. 22, no. 1, p.1, Apr. 2019.
DOI: 10.17844/jphpi.v22i1.25869
Google Scholar
[27]
Z. Hou, W. Qu, and C. Kan, "Synthesis and properties of triethoxysilane-terminated anionic polyurethane and its waterborne dispersions," J. Polym. Res., vol. 22, no. 6, p.111, Jun. 2015.
DOI: 10.1007/s10965-015-0757-8
Google Scholar
[28]
I. A. Azizah et al., "Synthesis and characterization of silver/Ti-ferrite nanocomposite for drug delivery agent," presented at the 12TH INTERNATIONAL SEMINAR ON NEW PARADIGM AND INNOVATION ON NATURAL SCIENCES AND ITS APPLICATIONS (12TH ISNPINSA): Contribution of Science and Technology in the Changing World, Semarang, Indonesia, 2024, p.070014.
DOI: 10.1063/5.0211758
Google Scholar
[29]
S. Husain, M. Irfansyah, N. H. Haryanti, S. Suryajaya, S. Arjo, and A. Maddu, "Synthesis and characterization of Fe 3 O 4 magnetic nanoparticles from iron ore," J. Phys. Conf. Ser., vol. 1242, no. 1, p.012021, Jun. 2019.
DOI: 10.1088/1742-6596/1242/1/012021
Google Scholar
[30]
A. Ansari, S. Vahedi, O. Tavakoli, M. Khoobi, and M. A. Faramarzi, "Novel Fe3O4/Hydroxyapatite/β-cyclodextrin Nanocomposite Adsorbent: Synthesis and Application in Heavy Metal Removal from Aqueous Solution: Heavy Metal Removal using Novel Nanocomposite Adsorbent," Appl. Organomet. Chem., vol. 33, no. 1, p. e4634, Jan. 2019.
DOI: 10.1002/aoc.4634
Google Scholar
[31]
P. Puspitasari et al., "Phase identification and morphology of CaCO 3 /CaO from Achatina Fulica snail shell as the base material for Hydroxyapatite," IOP Conf. Ser. Mater. Sci. Eng., vol. 1034, no. 1, p.012128, Feb. 2021.
DOI: 10.1088/1757-899X/1034/1/012128
Google Scholar
[32]
J. Liu, Z. Zhao, and G. Jiang, "Coating Fe 3 O 4 Magnetic Nanoparticles with Humic Acid for High Efficient Removal of Heavy Metals in Water," Environ. Sci. Technol., vol. 42, no. 18, p.6949–6954, Sep. 2008.
DOI: 10.1021/es800924c
Google Scholar
[33]
H. Derakhshankhah, M. Eskandani, S. Akbari Nakhjavani, S. Tasoglu, S. Vandghanooni, and M. Jaymand, "Electro-conductive silica nanoparticles-incorporated hydrogel based on alginate as a biomimetic scaffold for bone tissue engineering application," Int. J. Polym. Mater. Polym. Biomater., vol. 73, no. 4, p.266–278, Mar. 2024.
DOI: 10.1080/00914037.2022.2155159
Google Scholar
[34]
S. Kang, A. Haider, K. C. Gupta, H. Kim, and I. Kang, "Chemical Bonding of Biomolecules to the Surface of Nano-Hydroxyapatite to Enhance Its Bioactivity," Coatings, vol. 12, no. 7, p.999, Jul. 2022.
DOI: 10.3390/coatings12070999
Google Scholar
[35]
M. D. Nguyen, H.-V. Tran, S. Xu, and T. R. Lee, "Fe3O4 Nanoparticles: Structures, Synthesis, Magnetic Properties, Surface Functionalization, and Emerging Applications," Appl. Sci., vol. 11, no. 23, p.11301, Nov. 2021.
DOI: 10.3390/app112311301
Google Scholar
[36]
M. Saraçoğlu, U. Bakırdöven, H. Arpalı, U. O. Gezici, and S. Timur, "Synthesis and Investigation of Superparamagnetic Nano-structured Fe3O4 (Magnetite) Powder Using Co-Precipitation Method," Jan. 17, 2023.
DOI: 10.21203/rs.3.rs-2477766/v1
Google Scholar
[37]
F. Wang et al., "Facile solvothermal synthesis of monodisperse superparamagnetic mesoporous Fe3O4 nanospheres for pH-responsive controlled drug delivery," Colloids Surf. Physicochem. Eng. Asp., vol. 622, p.126643, Aug. 2021.
DOI: 10.1016/j.colsurfa.2021.126643
Google Scholar
[38]
R. Foroutan et al., "Zn 2+ removal from the aqueous environment using a polydopamine/hydroxyapatite/Fe 3 O 4 magnetic composite under ultrasonic waves," RSC Adv., vol. 11, no. 44, p.27309–27321, 2021.
DOI: 10.1039/D1RA04583K
Google Scholar
[39]
N. Abbasi Aval, J. Pirayesh Islamian, M. Hatamian, M. Arabfirouzjaei, J. Javadpour, and M.-R. Rashidi, "Doxorubicin Loaded Large-pore Mesoporous Hydroxyapatite Coated Superparamagnetic Fe 3 O 4 Nanoparticles for Cancer Treatment," Int. J. Pharm., vol. 509, no. 1–2, p.159–167, Jul. 2016.
DOI: 10.1016/j.ijpharm.2016.05.046
Google Scholar
[40]
X. Pei et al., "PEGylated Nano-graphene Oxide as a Nanocarrier for Delivering Mixed Anticancer Drugs to Improve Anticancer Activity," Sci. Rep., vol. 10, no. 1, p.2717, Feb. 2020.
DOI: 10.1038/s41598-020-59624-w
Google Scholar
[41]
N. V. Abramov, S. P. Turanska, A. P. Kusyak, A. L. Petranovska, and P. P. Gorbyk, "Synthesis and Properties of Magnetite/Hydroxyapatite/Doxorubicin Nanocomposites and Magnetic Liquids based on them," J. Nanostructure Chem., vol. 6, no. 3, p.223–233, Sep. 2016.
DOI: 10.1007/s40097-016-0196-z
Google Scholar
[42]
S. Karimi and H. Namazi, "Fe3O4@PEG-coated dendrimer modified graphene oxide nanocomposite as a pH-sensitive drug carrier for targeted delivery of doxorubicin," J. Alloys Compd., vol. 879, p.160426, Oct. 2021.
DOI: 10.1016/j.jallcom.2021.160426
Google Scholar
[43]
K. Naseri, E. Khademi, and S. Mortazavi-Derazkola, "Introducing a new pharmaceutical agent: Facile synthesis of CuFe12O19@HAp-APTES magnetic nanocomposites and its cytotoxic effect on HEK-293 cell as an efficient in vitro drug delivery system for atenolol," Arab. J. Chem., vol. 16, no. 1, p.104404, Jan. 2023.
DOI: 10.1016/j.arabjc.2022.104404
Google Scholar
[44]
L. Guo, Q. Zhao, and M. Wang, "Core–Shell Microspheres with Encapsulated Gold Nanoparticle Carriers for Controlled Release of Anti-Cancer Drugs," J. Funct. Biomater., vol. 15, no. 10, p.277, Sep. 2024.
DOI: 10.3390/jfb15100277
Google Scholar
[45]
Y. Herdiana, N. Wathoni, S. Shamsuddin, and M. Muchtaridi, "Drug release study of the chitosan-based nanoparticles," Heliyon, vol. 8, no. 1, p. e08674, Jan. 2022.
DOI: 10.1016/j.heliyon.2021.e08674
Google Scholar
[46]
Y. Wang et al., "Charge-Reversal APTES-Modified Mesoporous Silica Nanoparticles with High Drug Loading and Release Controllability," ACS Appl. Mater. Interfaces, vol. 8, no. 27, p.17166–17175, Jul. 2016.
DOI: 10.1021/acsami.6b05370
Google Scholar