Fe3O4/HA-APTES Nanocomposite as Drug Delivery Agent

Article Preview

Abstract:

Fe3O4/Hydroxyapatite (HA)-(3-Aminopropyl)triethoxysilane (APTES) nanocomposite as a drug delivery agent was successfully synthesized. The nanocomposite was characterized using X-ray diffractometry (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, vibrating sample magnetometer (VSM), and ultraviolet-visible (UV-Vis) spectroscopy to investigate the structural, morphology, magnetic properties, and DOX drug loading and release efficiency. The XRD pattern of Fe3O4 /HA-APTES nanocomposite showed the formation of two phases with cubic spinel structure for Fe3O4 and hexagonal structure for HA. The SEM image showed that the nanocomposite morphology tended to be granular (though not perfectly granular) with a particle size distribution of 65.9 nm. The functional groups detected from the FTIR results were Fe-O at 422–602 cm-1, indicating Fe3O4. Furthermore, vibrations of the phosphate group (PO43-) and Si-O-C appeared at 1037 cm-1 and 1048 cm-1, which are characteristic of the phosphate stretch in the HA and APTES. The Fe3O4/HA-APTES nanocomposite exhibited superparamagnetic properties with a saturation magnetization value of 19.37 emu/g. As a drug delivery agent, the Fe3O4/HA-APTES nanocomposite has a DOX loading efficiency of 5.79 mg/g up to 96.51% for eight hours and a release of 16.36% over 300 min.

You might also be interested in these eBooks

Info:

Pages:

1-9

Citation:

Online since:

June 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Liu et al., "Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment," Chin. Chem. Lett., vol. 34, no. 2, p.107518, Feb. 2023.

DOI: 10.1016/j.cclet.2022.05.032

Google Scholar

[2] A. Mushtaq et al., "Magnetic Hydroxyapatite Nanocomposites: The Advances from Synthesis to Biomedical Applications," Mater. Des., vol. 197, p.109269, Jan. 2021.

DOI: 10.1016/j.matdes.2020.109269

Google Scholar

[3] R. Rahimah, A. Fadli, Y. Yelmida, N. Nurfajriani, and Z. Zakwan, "Synthesis and Characterization Nanomagnetite by Co-precipitation," Indones. J. Chem. Sci. Technol. IJCST, vol. 2, no. 2, p.90, Jul. 2019.

DOI: 10.24114/ijcst.v2i2.13995

Google Scholar

[4] Q. Zhang, J. Liu, K. Yuan, Z. Zhang, X. Zhang, and X. Fang, "A Multi-controlled Drug Delivery System Based on Magnetic Mesoporous Fe3O4 Nanopaticles and a Phase Change Material for Cancer Thermo-chemotherapy," Nanotechnology, vol. 28, no. 40, p.405101, Oct. 2017.

DOI: 10.1088/1361-6528/aa883f

Google Scholar

[5] Wahajuddin and Arora, "Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers," Int. J. Nanomedicine, p.3445, Jul. 2012.

DOI: 10.2147/IJN.S30320

Google Scholar

[6] E. Hendrian, "Green synthesis of magnetic Fe3O4 nanoparticles (MNPs) using plant extract and Biomedicine Applications: Targeted Anticancer Drug Delivery System," Drug Deliv. Syst., 2023.

DOI: 10.26740/ifi.v12n2.p30-46

Google Scholar

[7] Z. Yang, W. Xu, M. Ji, A. Xie, Y. Shen, and M. Zhu, "A pH-Sensitive Composite with Controlled Multistage Drug Release for Synergetic Photothermal Therapy and Chemotherapy," Eur J Inorg Chem, 2017.

DOI: 10.1002/ejic.201701081

Google Scholar

[8] R. Rahimah, A. Fadli, Y. Yelmida, N. Nurfajriani, and Z. Zakwan, "Synthesis and Characterization Nanomagnetite by Co-precipitation," Indones. J. Chem. Sci. Technol. IJCST, vol. 2, no. 2, p.90, Jul. 2019.

DOI: 10.24114/ijcst.v2i2.13995

Google Scholar

[9] E. P. Hernandes, D. Lazarin-Bidóia, R. D. Bini, C. V. Nakamura, L. F. Cótica, and S. De Oliveira Silva Lautenschlager, "Doxorubicin-Loaded Iron Oxide Nanoparticles Induce Oxidative Stress and Cell Cycle Arrest in Breast Cancer Cells," Antioxidants, vol. 12, no. 2, p.237, Jan. 2023.

DOI: 10.3390/antiox12020237

Google Scholar

[10] M. D. Nguyen, H.-V. Tran, S. Xu, and T. R. Lee, "Fe3O4 Nanoparticles: Structures, Synthesis, Magnetic Properties, Surface Functionalization, and Emerging Applications," Appl. Sci., vol. 11, no. 23, p.11301, Nov. 2021.

DOI: 10.3390/app112311301

Google Scholar

[11] S. Mondal et al., "Hydroxyapatite: A journey from biomaterials to advanced functional materials," Adv. Colloid Interface Sci., vol. 321, p.103013, Nov. 2023.

DOI: 10.1016/j.cis.2023.103013

Google Scholar

[12] M. Du, J. Chen, K. Liu, H. Xing, and C. Song, "Recent advances in biomedical engineering of nano-hydroxyapatite including dentistry, cancer treatment and bone repair," Compos. Part B Eng., vol. 215, p.108790, Jun. 2021.

DOI: 10.1016/j.compositesb.2021.108790

Google Scholar

[13] H. Peng, M. Wang, C. Hu, and J. Guo, "A New Type of MgFe2O4@CuS-APTES Nanocarrier for Magnetic Targeting and Light-Microwave Dual Controlled Drug Release," Int. J. Nanomedicine, vol. Volume 15, p.8783–8802, Nov. 2020.

DOI: 10.2147/IJN.S267614

Google Scholar

[14] K. Aran, L. A. Sasso, N. Kamdar, and J. D. Zahn, "Irreversible, Direct Bonding of Nanoporous Polymer Membranes to PDMS or Glass Microdevices," Lab. Chip, vol. 10, no. 5, p.548, 2010.

DOI: 10.1039/b924816a

Google Scholar

[15] H. Cao, Y. Yang, X. Chen, and Z. Shao, "Intelligent Janus Nanoparticles for Intracellular Real-time Monitoring of Dual Drug Release," Nanoscale, vol. 8, no. 12, p.6754–6760, 2016.

DOI: 10.1039/C6NR00987E

Google Scholar

[16] C. Wells et al., "Engineering of Mesoporous Silica Coated Carbon-Based Materials Optimized for an Ultrahigh Doxorubicin Payload and a Drug Release Activated by pH, T , and NIR-light," Adv. Funct. Mater., vol. 28, no. 17, p.1706996, Apr. 2018.

DOI: 10.1002/adfm.201706996

Google Scholar

[17] A. Taufiq et al., "Synthesis of magnetite/silica nanocomposites from natural sand to create a drug delivery vehicle," Heliyon, vol. 6, no. 4, p. e03784, Apr. 2020.

DOI: 10.1016/j.heliyon.2020.e03784

Google Scholar

[18] R. Utami, A. Taufiq, S. Sunaryono, and A. Nikmah, "Preliminary studies on magnetite/HA/chitosan nanocomposite: Nanostructure and drug loading characteristics," presented at the THE 4TH INTERNATIONAL CONFERENCE ON LIFE SCIENCE AND TECHNOLOGY (ICoLiST), Malang, Indonesia, 2023, p.020035.

DOI: 10.1063/5.0112185

Google Scholar

[19] M. Osial et al., "One-pot synthesis of magnetic hydroxyapatite (SPION/HAp) for 5-fluorouracil delivery and magnetic hyperthermia," J. Nanoparticle Res., vol. 26, no. 1, p.7, Jan. 2024.

DOI: 10.1007/s11051-023-05916-x

Google Scholar

[20] Y. A. Hariyanto, A. Taufiq, Sunaryono, and S. Soontaranon, "Investigation on the Three-Dimensional Nanostructure and the Optical Properties of Hydroxyapatite/Magnetite Nanocomposites Prepared from Natural Resources," J. Korean Phys. Soc., vol. 75, no. 9, p.708–715, Nov. 2019.

DOI: 10.3938/jkps.75.708

Google Scholar

[21] M. Amano, H. Shibata, and K. Hashimoto, "Crystal growth of HAp on plate-like ZnO particles using APTES as surface treatment agents," J. Asian Ceram. Soc., vol. 11, no. 1, p.53–61, Jan. 2023.

DOI: 10.1080/21870764.2022.2148386

Google Scholar

[22] S. Mandal and K. Chaudhuri, "Magnetic Core-Shell Nanoparticles for Biomedical Applications," in Complex Magnetic Nanostructures, S. K. Sharma, Ed., Cham: Springer International Publishing, 2017, p.425–453.

DOI: 10.1007/978-3-319-52087-2_12

Google Scholar

[23] Y. Shi, A. Wan, Y. Shi, Y. Zhang, and Y. Chen, "Experimental and Mathematical Studies on the Drug Release Properties of Aspirin Loaded Chitosan Nanoparticles," BioMed Res. Int., vol. 2014, p.1–8, 2014.

DOI: 10.1155/2014/613619

Google Scholar

[24] A. Taufiq et al., "Synthesis of Magnetite/Silica Nanocomposites from Natural Sand to Create a Drug Delivery Vehicle," Heliyon, vol. 6, no. 4, p. e03784, Apr. 2020.

DOI: 10.1016/j.heliyon.2020.e03784

Google Scholar

[25] Kusnunnahari, A. Taufiq, A. Hidayat, R. E. Saputro, and N. Mufti, "Preparation and Characterization of Magnetite/PEG Nanoparticles Combined with Curcumin for Drug Delivery Application," Key Eng. Mater., vol. 855, p.299–307, Jul. 2020.

DOI: 10.4028/www.scientific.net/KEM.855.299

Google Scholar

[26] K. U. Henggu, B. Ibrahim, and P. Suptijah, "Hydroxyapatite Production from Cuttlebone as Bone Scaffold Material Preparations," J. Pengolah. Has. Perikan. Indones., vol. 22, no. 1, p.1, Apr. 2019.

DOI: 10.17844/jphpi.v22i1.25869

Google Scholar

[27] Z. Hou, W. Qu, and C. Kan, "Synthesis and properties of triethoxysilane-terminated anionic polyurethane and its waterborne dispersions," J. Polym. Res., vol. 22, no. 6, p.111, Jun. 2015.

DOI: 10.1007/s10965-015-0757-8

Google Scholar

[28] I. A. Azizah et al., "Synthesis and characterization of silver/Ti-ferrite nanocomposite for drug delivery agent," presented at the 12TH INTERNATIONAL SEMINAR ON NEW PARADIGM AND INNOVATION ON NATURAL SCIENCES AND ITS APPLICATIONS (12TH ISNPINSA): Contribution of Science and Technology in the Changing World, Semarang, Indonesia, 2024, p.070014.

DOI: 10.1063/5.0211758

Google Scholar

[29] S. Husain, M. Irfansyah, N. H. Haryanti, S. Suryajaya, S. Arjo, and A. Maddu, "Synthesis and characterization of Fe 3 O 4 magnetic nanoparticles from iron ore," J. Phys. Conf. Ser., vol. 1242, no. 1, p.012021, Jun. 2019.

DOI: 10.1088/1742-6596/1242/1/012021

Google Scholar

[30] A. Ansari, S. Vahedi, O. Tavakoli, M. Khoobi, and M. A. Faramarzi, "Novel Fe3O4/Hydroxyapatite/β-cyclodextrin Nanocomposite Adsorbent: Synthesis and Application in Heavy Metal Removal from Aqueous Solution: Heavy Metal Removal using Novel Nanocomposite Adsorbent," Appl. Organomet. Chem., vol. 33, no. 1, p. e4634, Jan. 2019.

DOI: 10.1002/aoc.4634

Google Scholar

[31] P. Puspitasari et al., "Phase identification and morphology of CaCO 3 /CaO from Achatina Fulica snail shell as the base material for Hydroxyapatite," IOP Conf. Ser. Mater. Sci. Eng., vol. 1034, no. 1, p.012128, Feb. 2021.

DOI: 10.1088/1757-899X/1034/1/012128

Google Scholar

[32] J. Liu, Z. Zhao, and G. Jiang, "Coating Fe 3 O 4 Magnetic Nanoparticles with Humic Acid for High Efficient Removal of Heavy Metals in Water," Environ. Sci. Technol., vol. 42, no. 18, p.6949–6954, Sep. 2008.

DOI: 10.1021/es800924c

Google Scholar

[33] H. Derakhshankhah, M. Eskandani, S. Akbari Nakhjavani, S. Tasoglu, S. Vandghanooni, and M. Jaymand, "Electro-conductive silica nanoparticles-incorporated hydrogel based on alginate as a biomimetic scaffold for bone tissue engineering application," Int. J. Polym. Mater. Polym. Biomater., vol. 73, no. 4, p.266–278, Mar. 2024.

DOI: 10.1080/00914037.2022.2155159

Google Scholar

[34] S. Kang, A. Haider, K. C. Gupta, H. Kim, and I. Kang, "Chemical Bonding of Biomolecules to the Surface of Nano-Hydroxyapatite to Enhance Its Bioactivity," Coatings, vol. 12, no. 7, p.999, Jul. 2022.

DOI: 10.3390/coatings12070999

Google Scholar

[35] M. D. Nguyen, H.-V. Tran, S. Xu, and T. R. Lee, "Fe3O4 Nanoparticles: Structures, Synthesis, Magnetic Properties, Surface Functionalization, and Emerging Applications," Appl. Sci., vol. 11, no. 23, p.11301, Nov. 2021.

DOI: 10.3390/app112311301

Google Scholar

[36] M. Saraçoğlu, U. Bakırdöven, H. Arpalı, U. O. Gezici, and S. Timur, "Synthesis and Investigation of Superparamagnetic Nano-structured Fe3O4 (Magnetite) Powder Using Co-Precipitation Method," Jan. 17, 2023.

DOI: 10.21203/rs.3.rs-2477766/v1

Google Scholar

[37] F. Wang et al., "Facile solvothermal synthesis of monodisperse superparamagnetic mesoporous Fe3O4 nanospheres for pH-responsive controlled drug delivery," Colloids Surf. Physicochem. Eng. Asp., vol. 622, p.126643, Aug. 2021.

DOI: 10.1016/j.colsurfa.2021.126643

Google Scholar

[38] R. Foroutan et al., "Zn 2+ removal from the aqueous environment using a polydopamine/hydroxyapatite/Fe 3 O 4 magnetic composite under ultrasonic waves," RSC Adv., vol. 11, no. 44, p.27309–27321, 2021.

DOI: 10.1039/D1RA04583K

Google Scholar

[39] N. Abbasi Aval, J. Pirayesh Islamian, M. Hatamian, M. Arabfirouzjaei, J. Javadpour, and M.-R. Rashidi, "Doxorubicin Loaded Large-pore Mesoporous Hydroxyapatite Coated Superparamagnetic Fe 3 O 4 Nanoparticles for Cancer Treatment," Int. J. Pharm., vol. 509, no. 1–2, p.159–167, Jul. 2016.

DOI: 10.1016/j.ijpharm.2016.05.046

Google Scholar

[40] X. Pei et al., "PEGylated Nano-graphene Oxide as a Nanocarrier for Delivering Mixed Anticancer Drugs to Improve Anticancer Activity," Sci. Rep., vol. 10, no. 1, p.2717, Feb. 2020.

DOI: 10.1038/s41598-020-59624-w

Google Scholar

[41] N. V. Abramov, S. P. Turanska, A. P. Kusyak, A. L. Petranovska, and P. P. Gorbyk, "Synthesis and Properties of Magnetite/Hydroxyapatite/Doxorubicin Nanocomposites and Magnetic Liquids based on them," J. Nanostructure Chem., vol. 6, no. 3, p.223–233, Sep. 2016.

DOI: 10.1007/s40097-016-0196-z

Google Scholar

[42] S. Karimi and H. Namazi, "Fe3O4@PEG-coated dendrimer modified graphene oxide nanocomposite as a pH-sensitive drug carrier for targeted delivery of doxorubicin," J. Alloys Compd., vol. 879, p.160426, Oct. 2021.

DOI: 10.1016/j.jallcom.2021.160426

Google Scholar

[43] K. Naseri, E. Khademi, and S. Mortazavi-Derazkola, "Introducing a new pharmaceutical agent: Facile synthesis of CuFe12O19@HAp-APTES magnetic nanocomposites and its cytotoxic effect on HEK-293 cell as an efficient in vitro drug delivery system for atenolol," Arab. J. Chem., vol. 16, no. 1, p.104404, Jan. 2023.

DOI: 10.1016/j.arabjc.2022.104404

Google Scholar

[44] L. Guo, Q. Zhao, and M. Wang, "Core–Shell Microspheres with Encapsulated Gold Nanoparticle Carriers for Controlled Release of Anti-Cancer Drugs," J. Funct. Biomater., vol. 15, no. 10, p.277, Sep. 2024.

DOI: 10.3390/jfb15100277

Google Scholar

[45] Y. Herdiana, N. Wathoni, S. Shamsuddin, and M. Muchtaridi, "Drug release study of the chitosan-based nanoparticles," Heliyon, vol. 8, no. 1, p. e08674, Jan. 2022.

DOI: 10.1016/j.heliyon.2021.e08674

Google Scholar

[46] Y. Wang et al., "Charge-Reversal APTES-Modified Mesoporous Silica Nanoparticles with High Drug Loading and Release Controllability," ACS Appl. Mater. Interfaces, vol. 8, no. 27, p.17166–17175, Jul. 2016.

DOI: 10.1021/acsami.6b05370

Google Scholar