Potentially of Bengawan Solo Iron Sands as Fe3+ Source in Green-Coprecipitated CFO & Ag-CFO Nanoparticles for Antibacterial Agent

Article Preview

Abstract:

Inherent magnetic features of engineered nanoparticles are quite important parameters for biomedical application. In this study, trying to process Bengawan Solo iron sand into a material that has potential for cobalt ferrite (CFO-NPs) and silver-cobalt ferrite (AgCFO-NPs) were synthesized by aqueous extract of tumeric. To modify the physical properties, annealing treatment was carried out at non-annealing temperatures and 500°C. The characterized by various instrument, and utilized for biomedical application with antibacterial activity. These are characterized XRD with showing results particle size was calculated by the Scherrer formula, which is around 19 nm to 25 nm. The results of FTIR peak adsorption at 400 and 600 cm-1 it shows the characteristics of spinel ferrite and the presence of vibrations at tetrahedral and octahedral sites. The coerciveness field (Hc) while those subjected to annealing temperature treatment increased from 46 Oe to 136 Oe. Nanoparticles cobalt ferrite (CFO-NPs) and silver-cobalt ferrite (AgCFO-NPs) can be used as antibacterial application. The AgCFO-NPs material has an antibacterial function as seen in the antibacterial test. AgCFO-NPs showed a good response being able to inhibit the growth of Staphylococcus aureus and Eschericia coli bacteria. By the obtained result it can be claimed that material nanoparticles will be useful model for biomedical applications if they are explored at advance level.

You might also be interested in these eBooks

Info:

Pages:

53-62

Citation:

Online since:

June 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Chinnasamy, C. N., Jayeyadevan, B., Shinoda, K, Tohji, K., 2003. Unusually high coercivity and critical single domain size of nearly monodispersed CoFe2O4 nanoparticles. Applied Physics Latters. 83(14): 2862-2864

DOI: 10.1063/1.1616655

Google Scholar

[2] Kotnala, R.K. & Shah, J. 2015. Ferrite Material: Nano to spintronics Regime. In Handbook of Magnetic Material, Volume 23.

Google Scholar

[3] Rajivgandhi. G, Ramachandran. G, Chackaravarthi G, Chelliah.K.C, Maruthuoandy. M, Quero. F, Al-Mekhlafi. F, Wadaan. M.A, Li.W.J. 2022. Preparation of antibacterial Zn and Ni Subtituted cobalt ferrite nanopartickes for efficient eradication. Analytical Biochemistry. 653. 114787.

DOI: 10.1016/j.ab.2022.114787

Google Scholar

[4] BindiyaDeya, C. Manoharana, M. Bououdinab, M. Venkateshwarluc, A. Murugand. 2023. Enhanced magnetic, electrochemical and gas sensing properties of cobalt substituted nickel ferrite nanoparticles prepared by hydrothermal route. Journal of Physics and Chemistry of Solids. 178. 111364.

DOI: 10.1016/j.jpcs.2023.111364

Google Scholar

[5] M.A. Maksoud, G.S. El-Sayyad, A.H. Ashour, A.I. El-Batal, M.S. Abd-Elmonem, H. A. Hendawy, M.M. El-Okr, Synthesis and characterization of metals-substituted cobalt ferrite [Mx Co (1-x) Fe2O4;(M=Zn, Cu and Mn; x=0 and 0.5)] nanoparticles as antimicrobial agents and sensors for Anagrelide determination in biological samples, Mater. Sci. Eng. C 92 (2018) 644–656, https://doi.org/.

DOI: 10.1016/j.msec.2018.07.007

Google Scholar

[6] Riyatun, Kusumaningsih. T, Supriyanto. A, Purnama. B. 2023. Characteristics of the microstructure, magnetic and antibacterial properties of silver-substituted cobalt ferrite nanoparticles from the sol-gel method. Kuwait Journal of Science.50. 569-574.

DOI: 10.1016/j.kjs.2023.04.001

Google Scholar

[7] Ibrahim. I, Kaltzaglou. A, Arhanasekou.C, Katsaras. F, Devlin. E, Kontos. A.g, Iaannidis. N, Perraki.M, Tsakiridis. P, Sygellou.L, Antaniadou. M, Falaras. P. 2020. Magnetically separable TiO2/Cofe2O4/Ag nanocomposite for the photocatalytic reduction of hexafalent chromium pollutant under UV and artificial solar light. Chemical Engineering journal. 381. 122730.

DOI: 10.1016/j.cej.2019.122730

Google Scholar

[8] Mubarok, A. T., Widiyandari, H., & Purnama, B. 2020. Annealing Temperature Effects in Co-Precipitated CoFe2O4 Nanoparticles Using Bengawan Solo River Fine Sediment. In Key Engineering Materials (Vol. 855, pp.64-69). Trans Tech Publications Ltd.

DOI: 10.4028/www.scientific.net/kem.855.64

Google Scholar

[9] M. ˇ Suljagi´ c, P. Vuli´ c, D. Jeremi´ c, V. Pavlovi´ c, S. Filipovi´ c, L. Kilanski, L. Andjelkovi´ c,The influence of the starch coating on the magnetic properties of nanosized cobalt ferrites obtained by different synthetic methods, Mater. Res. Bull. 134 (2021), 111117.

DOI: 10.1016/j.materresbull.2020.111117

Google Scholar

[10] Kumar. R., Ahmad. S., & Ansari. 2018. Structural Morphological magnetic propertise and cation distribution of Ce Sm co-substitution nanocrystaline cobalt ferrite. Material and Chemistry and Physics. 208. 248-257

DOI: 10.1016/j.matchemphys.2018.01.050

Google Scholar

[11] Lu, A. H. Salabas. E. E. &. Schut. F., 2007. Magnetic nanoparticles: synthesis,protection, functionalization, and application. Angewandte Chemie International Edition, 46(8): 1222-1244

DOI: 10.1002/anie.200602866

Google Scholar

[12] Dasi, Y.H., Utari, & Purnama, B. 2022. Effect of annealing temperature on nikel cobalt ferrite nanoparticles for synthesis characterization ad photocatalys. In AIP Conferences Procedings 2391(1) AIP Publishing LLC

DOI: 10.1063/5.0072435

Google Scholar

[13] Routray K.L., Saha.S., Bahera.D. 2019. Green synthesis approach for nano sized CoFe2O4 through aloevera mediated sol-gel auto combustion method for high frequency devices. Materials Chemistry and Physics. 224: 29-35.

DOI: 10.1016/j.matchemphys.2018.11.073

Google Scholar

[14] C.J. Prabagar, S. Anand, M.A. Jenifer, S. Pauline, P.A.S. Theoder. 2021. Effect of metal substitution (Zn,Cu and Ag) in cobalt ferrite nanocrystallites for antibacterial activities, Mater. Today: Proc. 47 (1999-2006 oi).

DOI: 10.1016/j.matpr.2021.04.150

Google Scholar

[15] Gingasu.D, Mindru.L, Patron.G, Marinescu.S, Preda. J.M, Calderon-Moreno, P. Osiceanu, S. Someacescu, n. Stanica, M. Popa, C. Sabiuc, m.C. Chifiriuc. 2017. Soft chemistry routes for the preparation of Ag-CoFe2O4 nanocomposite, Ceram. Int. 43(3) 3284.

DOI: 10.1016/j.ceramint.2016.11.161

Google Scholar

[16] Arilasita, R., Utari, & Purnama, B. (2020, November). The effect of annealing on the crystalline structure of CoBi0.1Fe1.9O4 nanoparticles. In AIP Conference Proceedings (Vol. 2296, No. 1, p.020128). AIP Publishing LLC.

DOI: 10.1063/5.0030385

Google Scholar

[17] Sun, M., Han, X., & Chen, S. 2019. Synthesis and Photocatalytic activity of nano- cobalt ferrite catalyst for the photo-degradation various dyes under simulated sunlight irradiation. Material Science in Semiconductors Processing, 91, 367-376

DOI: 10.1016/j.mssp.2018.12.005

Google Scholar

[18] R.M. Kershi, S.H. Aldirham, Transport and dielectric properties of nanocrystallite cobalt ferrites: correlation with cations distribution and crystallite size, Mater. Chem. Phys. 238 (2019), 121902, https://doi.org/10.1016/j. matchemphys.2019.121902.

DOI: 10.1016/j.matchemphys.2019.121902

Google Scholar

[19] J.P.K. Chintala, S. Bharadwaj, M.C. Varma, G.S.V.R.K. Choudary, Impact of cobalt substitution on cation distribution and elastic properties of Ni–Zn ferrite investigated by X-ray diffraction, infrared spectroscopy, and Mossbauer ¨ spectral analysis, J. Phys. Chem. Solid. 160 (2022), 110298, https://doi.org/10.1016/j. jpcs.2021.110298.

DOI: 10.1016/j.jpcs.2021.110298

Google Scholar

[20] Waldron, J. 1956. Infrared Spectra of farieties. Physical Review. 99(6): 1727-1735.

Google Scholar

[21] Kumar, H., Sigh, J. P., Srivastava, R.C., Agrawal, H. M., & Asokan, K.2014 FTIR and electrical study of dysprosium doped cobalt ferrite nanoparticle. Journal of Nanoscience

DOI: 10.1155/2014/862415

Google Scholar

[22] Jabbar, R., Sabeeh, S. H., & Hameed, A. M. (2020). Structural, dielectric and magnetic properties of Mn+ 2 doped cobalt ferrite nanoparticles. Journal of Magnetism and Magnetic Materials, 494, 165726.

DOI: 10.1016/j.jmmm.2019.165726

Google Scholar

[23] Setiadi E.A., S., 2013. Sintesis nanopartikel cobalt ferrite (CoFe2O4) dengan metode kopresipitasi dan karakterisasi sifat kamagnetannya.. Indonesia Journal of Applied Physics. 3(1): 34-58.

DOI: 10.13057/ijap.v3i01.1216

Google Scholar

[24] Setiadi E.A., S., 2013. Sintesis nanopartikel cobalt ferrite (CoFe2O4) dengan metode kopresipitasi dan karakterisasi sifat kamagnetannya.. Indonesia Journal of Applied Physics. 3(1): 34-58

DOI: 10.13057/ijap.v3i01.1216

Google Scholar

[25] Jiles, David. 1998. Introduction to Magnetism and Magnetic Material Third Edition. London: Chapman & Hall.

Google Scholar

[26] P. Mahajan, A. Sharma, B. Kaur, N. Goyal, S. Gautam, Green synthesized (Ocimum sanctum and Allium sativum) Ag-doped cobalt ferrite nanoparticles for antibacterial application, Vacuum 161 (2019) 389–397.

DOI: 10.1016/j.vacuum.2018.12.021

Google Scholar

[27] M.K. Satheeshkumar, E.R. Kumar, C. Srinivas, N. Suryanarayana, M. Deepty, D.L. Sastry, Study of structural, morphological, and magnetic properties of Ag-substituted cobalt ferrite their antibacterial activity, J. Magn. Magn Mater. 469 (2019) 691–697.

DOI: 10.1016/j.jmmm.2018.09.039

Google Scholar

[28] M. Goodarz Naseri, E. b. Saion, h. Abbastabar Ahangar, A. h. Shaari, & M. Hashim, Journal of Nanomaterials, 2010, 1-8 (2010).

DOI: 10.1155/2010/907686

Google Scholar