[1]
Chinnasamy, C. N., Jayeyadevan, B., Shinoda, K, Tohji, K., 2003. Unusually high coercivity and critical single domain size of nearly monodispersed CoFe2O4 nanoparticles. Applied Physics Latters. 83(14): 2862-2864
DOI: 10.1063/1.1616655
Google Scholar
[2]
Kotnala, R.K. & Shah, J. 2015. Ferrite Material: Nano to spintronics Regime. In Handbook of Magnetic Material, Volume 23.
Google Scholar
[3]
Rajivgandhi. G, Ramachandran. G, Chackaravarthi G, Chelliah.K.C, Maruthuoandy. M, Quero. F, Al-Mekhlafi. F, Wadaan. M.A, Li.W.J. 2022. Preparation of antibacterial Zn and Ni Subtituted cobalt ferrite nanopartickes for efficient eradication. Analytical Biochemistry. 653. 114787.
DOI: 10.1016/j.ab.2022.114787
Google Scholar
[4]
BindiyaDeya, C. Manoharana, M. Bououdinab, M. Venkateshwarluc, A. Murugand. 2023. Enhanced magnetic, electrochemical and gas sensing properties of cobalt substituted nickel ferrite nanoparticles prepared by hydrothermal route. Journal of Physics and Chemistry of Solids. 178. 111364.
DOI: 10.1016/j.jpcs.2023.111364
Google Scholar
[5]
M.A. Maksoud, G.S. El-Sayyad, A.H. Ashour, A.I. El-Batal, M.S. Abd-Elmonem, H. A. Hendawy, M.M. El-Okr, Synthesis and characterization of metals-substituted cobalt ferrite [Mx Co (1-x) Fe2O4;(M=Zn, Cu and Mn; x=0 and 0.5)] nanoparticles as antimicrobial agents and sensors for Anagrelide determination in biological samples, Mater. Sci. Eng. C 92 (2018) 644–656, https://doi.org/.
DOI: 10.1016/j.msec.2018.07.007
Google Scholar
[6]
Riyatun, Kusumaningsih. T, Supriyanto. A, Purnama. B. 2023. Characteristics of the microstructure, magnetic and antibacterial properties of silver-substituted cobalt ferrite nanoparticles from the sol-gel method. Kuwait Journal of Science.50. 569-574.
DOI: 10.1016/j.kjs.2023.04.001
Google Scholar
[7]
Ibrahim. I, Kaltzaglou. A, Arhanasekou.C, Katsaras. F, Devlin. E, Kontos. A.g, Iaannidis. N, Perraki.M, Tsakiridis. P, Sygellou.L, Antaniadou. M, Falaras. P. 2020. Magnetically separable TiO2/Cofe2O4/Ag nanocomposite for the photocatalytic reduction of hexafalent chromium pollutant under UV and artificial solar light. Chemical Engineering journal. 381. 122730.
DOI: 10.1016/j.cej.2019.122730
Google Scholar
[8]
Mubarok, A. T., Widiyandari, H., & Purnama, B. 2020. Annealing Temperature Effects in Co-Precipitated CoFe2O4 Nanoparticles Using Bengawan Solo River Fine Sediment. In Key Engineering Materials (Vol. 855, pp.64-69). Trans Tech Publications Ltd.
DOI: 10.4028/www.scientific.net/kem.855.64
Google Scholar
[9]
M. ˇ Suljagi´ c, P. Vuli´ c, D. Jeremi´ c, V. Pavlovi´ c, S. Filipovi´ c, L. Kilanski, L. Andjelkovi´ c,The influence of the starch coating on the magnetic properties of nanosized cobalt ferrites obtained by different synthetic methods, Mater. Res. Bull. 134 (2021), 111117.
DOI: 10.1016/j.materresbull.2020.111117
Google Scholar
[10]
Kumar. R., Ahmad. S., & Ansari. 2018. Structural Morphological magnetic propertise and cation distribution of Ce Sm co-substitution nanocrystaline cobalt ferrite. Material and Chemistry and Physics. 208. 248-257
DOI: 10.1016/j.matchemphys.2018.01.050
Google Scholar
[11]
Lu, A. H. Salabas. E. E. &. Schut. F., 2007. Magnetic nanoparticles: synthesis,protection, functionalization, and application. Angewandte Chemie International Edition, 46(8): 1222-1244
DOI: 10.1002/anie.200602866
Google Scholar
[12]
Dasi, Y.H., Utari, & Purnama, B. 2022. Effect of annealing temperature on nikel cobalt ferrite nanoparticles for synthesis characterization ad photocatalys. In AIP Conferences Procedings 2391(1) AIP Publishing LLC
DOI: 10.1063/5.0072435
Google Scholar
[13]
Routray K.L., Saha.S., Bahera.D. 2019. Green synthesis approach for nano sized CoFe2O4 through aloevera mediated sol-gel auto combustion method for high frequency devices. Materials Chemistry and Physics. 224: 29-35.
DOI: 10.1016/j.matchemphys.2018.11.073
Google Scholar
[14]
C.J. Prabagar, S. Anand, M.A. Jenifer, S. Pauline, P.A.S. Theoder. 2021. Effect of metal substitution (Zn,Cu and Ag) in cobalt ferrite nanocrystallites for antibacterial activities, Mater. Today: Proc. 47 (1999-2006 oi).
DOI: 10.1016/j.matpr.2021.04.150
Google Scholar
[15]
Gingasu.D, Mindru.L, Patron.G, Marinescu.S, Preda. J.M, Calderon-Moreno, P. Osiceanu, S. Someacescu, n. Stanica, M. Popa, C. Sabiuc, m.C. Chifiriuc. 2017. Soft chemistry routes for the preparation of Ag-CoFe2O4 nanocomposite, Ceram. Int. 43(3) 3284.
DOI: 10.1016/j.ceramint.2016.11.161
Google Scholar
[16]
Arilasita, R., Utari, & Purnama, B. (2020, November). The effect of annealing on the crystalline structure of CoBi0.1Fe1.9O4 nanoparticles. In AIP Conference Proceedings (Vol. 2296, No. 1, p.020128). AIP Publishing LLC.
DOI: 10.1063/5.0030385
Google Scholar
[17]
Sun, M., Han, X., & Chen, S. 2019. Synthesis and Photocatalytic activity of nano- cobalt ferrite catalyst for the photo-degradation various dyes under simulated sunlight irradiation. Material Science in Semiconductors Processing, 91, 367-376
DOI: 10.1016/j.mssp.2018.12.005
Google Scholar
[18]
R.M. Kershi, S.H. Aldirham, Transport and dielectric properties of nanocrystallite cobalt ferrites: correlation with cations distribution and crystallite size, Mater. Chem. Phys. 238 (2019), 121902, https://doi.org/10.1016/j. matchemphys.2019.121902.
DOI: 10.1016/j.matchemphys.2019.121902
Google Scholar
[19]
J.P.K. Chintala, S. Bharadwaj, M.C. Varma, G.S.V.R.K. Choudary, Impact of cobalt substitution on cation distribution and elastic properties of Ni–Zn ferrite investigated by X-ray diffraction, infrared spectroscopy, and Mossbauer ¨ spectral analysis, J. Phys. Chem. Solid. 160 (2022), 110298, https://doi.org/10.1016/j. jpcs.2021.110298.
DOI: 10.1016/j.jpcs.2021.110298
Google Scholar
[20]
Waldron, J. 1956. Infrared Spectra of farieties. Physical Review. 99(6): 1727-1735.
Google Scholar
[21]
Kumar, H., Sigh, J. P., Srivastava, R.C., Agrawal, H. M., & Asokan, K.2014 FTIR and electrical study of dysprosium doped cobalt ferrite nanoparticle. Journal of Nanoscience
DOI: 10.1155/2014/862415
Google Scholar
[22]
Jabbar, R., Sabeeh, S. H., & Hameed, A. M. (2020). Structural, dielectric and magnetic properties of Mn+ 2 doped cobalt ferrite nanoparticles. Journal of Magnetism and Magnetic Materials, 494, 165726.
DOI: 10.1016/j.jmmm.2019.165726
Google Scholar
[23]
Setiadi E.A., S., 2013. Sintesis nanopartikel cobalt ferrite (CoFe2O4) dengan metode kopresipitasi dan karakterisasi sifat kamagnetannya.. Indonesia Journal of Applied Physics. 3(1): 34-58.
DOI: 10.13057/ijap.v3i01.1216
Google Scholar
[24]
Setiadi E.A., S., 2013. Sintesis nanopartikel cobalt ferrite (CoFe2O4) dengan metode kopresipitasi dan karakterisasi sifat kamagnetannya.. Indonesia Journal of Applied Physics. 3(1): 34-58
DOI: 10.13057/ijap.v3i01.1216
Google Scholar
[25]
Jiles, David. 1998. Introduction to Magnetism and Magnetic Material Third Edition. London: Chapman & Hall.
Google Scholar
[26]
P. Mahajan, A. Sharma, B. Kaur, N. Goyal, S. Gautam, Green synthesized (Ocimum sanctum and Allium sativum) Ag-doped cobalt ferrite nanoparticles for antibacterial application, Vacuum 161 (2019) 389–397.
DOI: 10.1016/j.vacuum.2018.12.021
Google Scholar
[27]
M.K. Satheeshkumar, E.R. Kumar, C. Srinivas, N. Suryanarayana, M. Deepty, D.L. Sastry, Study of structural, morphological, and magnetic properties of Ag-substituted cobalt ferrite their antibacterial activity, J. Magn. Magn Mater. 469 (2019) 691–697.
DOI: 10.1016/j.jmmm.2018.09.039
Google Scholar
[28]
M. Goodarz Naseri, E. b. Saion, h. Abbastabar Ahangar, A. h. Shaari, & M. Hashim, Journal of Nanomaterials, 2010, 1-8 (2010).
DOI: 10.1155/2010/907686
Google Scholar