Plant-Mediated Synthesis of Zinc Oxide Nanoparticles Using Aqueous Extract of Grewia tenax Fruits for Potential Antibacterial Application

Article Preview

Abstract:

Public health is seriously threatened by antibiotic-resistant microbes, which calls for creative responses. This work examines the green manufacture of zinc oxide nanoparticles (ZnO NPs) using Grewia tenax fruit aqueous extract and assesses how efficient they are as antibacterial agents. X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) were used to characterize the produced nanoparticles. With zones of inhibition (ZOI) of 22.67 mm against Escherichia coli and 24.3 mm against Staphylococcus aureus, the ZnO NPs demonstrated exceptional antibacterial activity. Significantly, the nanoparticles' diverse morphology-mostly appearing as rods and spheres-correlated with their increased antibacterial activity. Since greater dosages did not produce better outcomes, it was determined that the ideal concentration range for efficient antibacterial action was between 0.05 and 0.4 mg/mL. Through membrane rupture and the release of Zn2+ ions, reactive oxygen species (ROS) are produced, causing oxidative stress and ultimately bacterial cell death. This study demonstrates the potential of ZnO NPs made from Grewia tenax as powerful antibacterial agents and recommends more synthesis parameter optimization to increase their effectiveness and expand their uses in environmental science and medicine.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] A. Gupta, S. Mumtaz, C.-H. Li, I. Hussain, V.M. Rotello, Combatting antibiotic-resistant bacteria using nanomaterials, Chem. Soc. Rev. 48 (2019) 415-427.

DOI: 10.1039/c7cs00748e

Google Scholar

[2] D. van Duin, D.L. Paterson, Multidrug-Resistant Bacteria in the Community: An Update,  Infect. Dis. Clin. North. Am. 34 (2020) 709-722.

DOI: 10.1016/j.idc.2020.08.002

Google Scholar

[3] IACG, No Time to Wait: Securing the future from drug-resistant infections. Report to the Secretary-General of the United Nations, 2019.

Google Scholar

[4] H. Zheng, J. Tang, Y. Wei, X. Deng, Y. Zhang, X. Ma, X. Jiang, Z.P. Xu, H. Liao, Antibacterial properties of cerium oxide nanoparticles: Recent progresses and future challenges , Particuology. 93 (2024) 264-283.

DOI: 10.1016/j.partic.2024.06.017

Google Scholar

[5] P. Yadav, S. Jain, S. Nimesh, N. Gupta, S. Chatterjee, Grewia tenax bark extract mediated silver nanoparticles as an antibacterial, antibiofilm and antifungal agent, Adv. Nat. Sci.: Nanosci. Nanotechnol. 15 (2024) 015013.

DOI: 10.1088/2043-6262/ad2c79

Google Scholar

[6] W.M. Saod, M.S. Al-Janaby, E.W. Gayadh, A. Ramizy, L.L. Hamid, Biogenic synthesis of iron oxide nanoparticles using Hibiscus sabdariffa extract: Potential for antibiotic development and antibacterial activity against multidrug-resistant bacteria, Curr. Res. Green Sustainable Chem. 8 (2024) 100397.

DOI: 10.1016/j.crgsc.2024.100397

Google Scholar

[7] A.B. Younis, V. Milosavljevic, T. Fialova, K. Smerkova, H. Michalkova, P. Svec, P. Antal, P. Kopel, V. Adam, L. Zurek, K. Dolezelikova, Synthesis and characterization of TiO2 nanoparticles combined with geraniol and their synergistic antibacterial activity, BMC Microbiol. 23 (2023) 207.

DOI: 10.1186/s12866-023-02955-1

Google Scholar

[8] M.R. Kamli, M.A. Malik, V. Srivastava, J.S.M. Sabir, E.H. Mattar, A. Ahmad, Biogenic ZnO Nanoparticles Synthesized from Origanum vulgare Abrogates Quorum Sensing and Biofilm Formation in Opportunistic Pathogen Chromobacterium violaceum, Pharmaceutics. 13 (2021) 1743.

DOI: 10.3390/pharmaceutics13111743

Google Scholar

[9] A.M. Ferreira, A. Vikulina, M. Loughlin, D. Volodkin, How similar is the antibacterial activity of silver nanoparticles coated with different capping agents?, RSC Adv. 13 (2023) 10542-10555.

DOI: 10.1039/d3ra00917c

Google Scholar

[10] M.M. Shanwaz, P. Shyam, Anti-bacterial Effect and Characteristics of Gold Nanoparticles (AuNps) Formed with Vitex negundo Plant Extract, Appl. Biochem. Biotechnol. 195 (2023) 1630-1643.

DOI: 10.1007/s12010-022-04217-8

Google Scholar

[11] N.M.A. Aziz, D.A. Goda, D.I. Abdel-Meguid, E.E. El-Sharouny, N.A. Soliman, A comparative study of the biosynthesis of CuNPs by Niallia circulans G9 and Paenibacillus sp. S4c strains: characterization and application as antimicrobial agents, Microb. Cell Fact. 23 (2024) 156.

DOI: 10.1186/s12934-024-02422-0

Google Scholar

[12] D.R. Jaishi, I. Ojha, G. Bhattarai, R. Baraili, I. Pathak, D.R. Ojha, D.K. Shrestha, K.R. Sharma, Plant-mediated synthesis of zinc oxide (ZnO) nanoparticles using Alnus nepalensis D. Don for biological applications. Heliyon, 10 (2024) e39255.

DOI: 10.1016/j.heliyon.2024.e39255

Google Scholar

[13] I.A. Amar, S.A. Shamsi, R.M. Saheem, A.A. Altawati, M.A. Abdulkarim, M.A. Abdulqadir, I.A. Abdalsamed, Surfactant-Assisted Co-Precipitation Synthesis of Ca-Doped Ceria Nanoparticles for Antibacterial Applications, Adv. J. Chem. A, 4 (2021) 10-21.

Google Scholar

[14] I.A. Amar, S.S. Kanah, H.A. Hijaz, M.A. Abdulqadir, S.A. Shamsi, I.A. Abdalsamed, M.A. Samba, Surfactant-assisted sol-gel synthesis of zinc ferrite magnetic nanoparticles for oil spills cleanup from seawater and antibacterial activity applications, World J. Eng. 20 (2023) 713-721.

DOI: 10.1108/wje-10-2021-0605

Google Scholar

[15] I.A. Amar, M.A. Abdulqadir, A. Benettayeb, B. Lal, S.A. Shamsi, A. Hosseini-Bandegharaei, Cerium-Doped Calcium Ferrite for Malachite Green Dye Removal and Antibacterial Activities Chem. Afr. 7 (2024) 1423-1441.

DOI: 10.1007/s42250-023-00834-w

Google Scholar

[16] Y.H.I. Mohammed, S. Alghamdi, B. Jabbar, D. Marghani, S. Beigh, A.S. Abouzied, N.E. Khalifa, W.M.A. Khojali, B. Huwaimel, D.H.M. Alkhalifah, W.N. Hozzein, Green Synthesis of Zinc Oxide Nanoparticles Using Cymbopogon citratus Extract and Its Antibacterial Activity, ACS Omega. 8 (2023) 32027-32042.

DOI: 10.1021/acsomega.3c03908

Google Scholar

[17] M.Y. Al-darwesh, S.S. Ibrahim, M.A. Mohammed, A review on plant extract mediated green synthesis of zinc oxide nanoparticles and their biomedical applications, Results Chem. 7 (2024) 101368.

DOI: 10.1016/j.rechem.2024.101368

Google Scholar

[18] H. Agarwal, S. Venkat Kumar, S. Rajeshkumar, A review on green synthesis of zinc oxide nanoparticles – An eco-friendly approach. Resour.-Effic. Technol. 3 (2017) 406-413.

DOI: 10.1016/j.reffit.2017.03.002

Google Scholar

[19] K. Kisimba, A. Krishnan, M. Faya, K. Byanga, K. Kasumbwe, K. Vijayakumar, R. Prasad, Synthesis of Metallic Nanoparticles Based on Green Chemistry and Their Medical Biochemical Applications: Synthesis of Metallic Nanoparticles, J. Renewable Mater. 11 (2023) 2575-2591.

DOI: 10.32604/jrm.2023.026159

Google Scholar

[20] J. Gangwar, B. Balasubramanian, A. Pratap Singh, A. Meyyazhagan, M. Pappuswamy, A.M. Alanazi, K.R.R. Rengasamy, J. Kadanthottu Sebastian, Biosynthesis of zinc oxide nanoparticles mediated by Strobilanthes hamiltoniana: Characterizations, and its biological applications , Kuwait J Sci. 51 (2024) 100102.

DOI: 10.1016/j.kjs.2023.07.008

Google Scholar

[21] D.K. Takcı, M.S. Ozdenefe, T. Huner, H.A.M. Takcı, Plant-mediated green route to the synthesis of zinc oxide nanoparticles: in vitro antibacterial potential. J. Aust. Ceram. Soc. (2024).

DOI: 10.1007/s41779-024-01064-0

Google Scholar

[22] R. Hamed, R.Z. Obeid, R. Abu-Huwaij, Plant mediated-green synthesis of zinc oxide nanoparticles: An insight into biomedical applications, Nanotechnol. Rev. 12 (2023) 20230112.

DOI: 10.1515/ntrev-2023-0112

Google Scholar

[23] A. Melese, W. Wubet, A. Hussen, K. Mulate, A. Hailekiros, A review on biogenic synthesized zinc oxide nanoparticles: synthesis, characterization, and its applications, Rev. Inorg. Chem. 44 (2024) 303-321.

DOI: 10.1515/revic-2023-0022

Google Scholar

[24] M. Naseer, U. Aslam, B. Khalid, B. Chen, Green route to synthesize Zinc Oxide Nanoparticles using leaf extracts of Cassia fistula and Melia azadarach and their antibacterial potential, Sci. Rep. 10 (2020) 9055.

DOI: 10.1038/s41598-020-65949-3

Google Scholar

[25] T.S. Aldeen, H.E. Ahmed Mohamed, M. Maaza, ZnO nanoparticles prepared via a green synthesis approach: Physical properties, photocatalytic and antibacterial activity, J. Phys. Chem. Solids. 160 (2022) 110313.

DOI: 10.1016/j.jpcs.2021.110313

Google Scholar

[26] S.S. Sana, R. Vadde, R. Kumar, S.K. Arla, A.R. Somala, K.S.V. Krishna Rao, Z. Zhijun, V.K.N. Boya, K. Mondal, N. Mamidi, Eco-friendly and facile production of antibacterial zinc oxide nanoparticles from Grewia flavescens (G. flavescens) leaf extract for biomedical applications, J. Drug Delivery Sci. Technol. 80 (2023) 104186.

DOI: 10.1016/j.jddst.2023.104186

Google Scholar

[27] M.F. Islam, S. islam, M.A.S. Miah, A.K.O. Huq, A.K. Saha, Z.J. Mou, M.M.H. Mondol, M.N.I. Bhuiyan, Green synthesis of zinc oxide nano particles using Allium cepa L. waste peel extracts and its antioxidant and antibacterial activities, Heliyon, 10 (2024) e25430.

DOI: 10.1016/j.heliyon.2024.e25430

Google Scholar

[28] A. Fouda, E. Saied, A.M. Eid, F. Kouadri, A.M. Alemam, M.F. Hamza, M. Alharbi, A. Elkelish, S.E.-D. Hassan, Green Synthesis of Zinc Oxide Nanoparticles Using an Aqueous Extract of Punica granatum for Antimicrobial and Catalytic Activity, J. Funct. Biomater. 14 (2023) 205.

DOI: 10.3390/jfb14040205

Google Scholar

[29] S. Faisal, H. Jan, S.A. Shah, S. Shah, A. Khan, M.T. Akbar, M. Rizwan, F. Jan, Wajidullah, N. Akhtar, A. Khattak, S. Syed, Green Synthesis of Zinc Oxide (ZnO) Nanoparticles Using Aqueous Fruit Extracts of Myristica fragrans: Their Characterizations and Biological and Environmental Applications, ACS Omega. 6 (2021) 9709-9722.

DOI: 10.1021/acsomega.1c00310

Google Scholar

[30] V. Sharma, G. Kumar, P. Kumar, D. Kumar, M. Nemiwal, Green Synthesis of ZnO Nanoparticles from Dysoxylum binectariferum Fruit Extract and Assessment of Antimicrobial Potential, ChemistrySelect, 9 (2024) e202402125.

DOI: 10.1002/slct.202402125

Google Scholar

[31] A.E.A. Yagoub, G.M. Al-Shammari, L.N. Al-Harbi, P. Subash-Babu, R. Elsayim, M.A. Mohammed, M.A. Yahya, S.Z.A. Fattiny, Antimicrobial Properties of Zinc Oxide Nanoparticles Synthesized from Lavandula pubescens Shoot Methanol Extract, Appl. Sci. 12 (2022) 11613.

DOI: 10.3390/app122211613

Google Scholar

[32] M.A.H. Hamami, I.A. Mohamed Ahmed, F.Y. Al-Juhaimi, Y.I. Shoqairan, A.A. AbuDujayn, E.E. Babiker, Utilization of Grewia tenax fruit dried-ground as a preservative and antioxidant in beef burgers, CYTA J Food. 22 (2024) 2341794.

DOI: 10.1080/19476337.2024.2341794

Google Scholar

[33] A.M.E. Sulieman, A.A. Mariod, Grewia tenax (Guddaim): Phytochemical Constituents, Bioactive Compounds, Traditional and Medicinal Uses, in: A.A. Mariod (Ed.) Wild Fruits: Composition, Nutritional Value and Products, Springer International Publishing, Cham, 2019, pp.165-173.

DOI: 10.1007/978-3-030-31885-7_14

Google Scholar

[34] M.S. Al-Said, R.A. Mothana, M.O. Al-Sohaibani, S. Rafatullah, Ameliorative Effect of Grewia tenax (Forssk) Fiori Fruit Extract on CCl4–Induced Oxidative Stress and Hepatotoxicity in Rats, J. Food Sci. 76 (2011) T200-T206.

DOI: 10.1111/j.1750-3841.2011.02381.x

Google Scholar

[35] P. Yadav, M. Singhal, S. Chatterjee, S. Nimesh, N. Gupta, Grewia tenax-Mediated Silver Nanoparticles as Efficient Antibacterial and Antifungal Agents, Nanomater. Nanotechnol. 2024 (2024) 9912599.

DOI: 10.1155/2024/9912599

Google Scholar

[36] E. Erb, in, https://www.southernafricanplants.net/plantdata_sub.php?Mspec_ID=2814, Accessed: 31-12-2024.

Google Scholar

[37] J. Gebauer, A. Patzelt, K. Hammer, A. Buerkert, First record of Grewia tenax (Forssk.) Fiori in northern Oman, a valuable fruit producing shrub, Genet. Resour. Crop Evol. 54 (2007) 1153-1158.

DOI: 10.1007/s10722-007-9241-6

Google Scholar

[38] S.K. Aditha, A.D. Kurdekar, L.A.A. Chunduri, S. Patnaik, V. Kamisetti, Aqueous based reflux method for green synthesis of nanostructures: Application in CZTS synthesis, MethodsX, 3 (2016) 35-42.

DOI: 10.1016/j.mex.2015.12.003

Google Scholar

[39] J. Jalab, W. Abdelwahed, A. Kitaz, R. Al-Kayali, Green synthesis of silver nanoparticles using aqueous extract of Acacia cyanophylla and its antibacterial activity, Heliyon. 7 (2021) e08033.

DOI: 10.1016/j.heliyon.2021.e08033

Google Scholar

[40] L. Lajoie, A.-S. Fabiano-Tixier, F. Chemat, Water as Green Solvent: Methods of Solubilisation and Extraction of Natural Products—Past, Present and Future Solutions, Pharmaceuticals. 15 (2022) 1507.

DOI: 10.3390/ph15121507

Google Scholar

[41] F.H. Abdullah, N.H.H. Abu Bakar, M. Abu Bakar, Low temperature biosynthesis of crystalline zinc oxide nanoparticles from Musa acuminata peel extract for visible-light degradation of methylene blue, Optik. 206 (2020) 164279.

DOI: 10.1016/j.ijleo.2020.164279

Google Scholar

[42] D. Mutukwa, R.T. Taziwa, L. Khotseng, A Review of Plant-Mediated ZnO Nanoparticles for Photodegradation and Antibacterial Applications, Nanomaterials. 14 (2024) 1182.

DOI: 10.3390/nano14141182

Google Scholar

[43] S. Donga, S. Chanda, Caesalpinia crista Seeds Mediated Green Synthesis of Zinc Oxide Nanoparticles for Antibacterial, Antioxidant, and Anticancer Activities, BioNanoScience. 12 (2022) 451-462.

DOI: 10.1007/s12668-022-00952-8

Google Scholar

[44] G.M. Abdelghani, A.B. Ahmed, A.B. Al-Zubaidi, Synthesis, characterization, and the influence of energy of irradiation on optical properties of ZnO nanostructures, Sci. Rep. 12 (2022) 20016.

DOI: 10.1038/s41598-022-24648-x

Google Scholar

[45] S. Saleem, M.H. Jameel, A. Rehman, M.B. Tahir, M.I. Irshad, Z.Y. Jiang, R.Q. Malik, A.A. Hussain, A.u. Rehman, A.H. Jabbar, A.Y. Alzahrani, M.A. Salem, M.M. Hessien, Evaluation of structural, morphological, optical, and electrical properties of zinc oxide semiconductor nanoparticles with microwave plasma treatment for electronic device applications, J. Mater. Res. Technol. 19 (2022) 2126-2134.

DOI: 10.1016/j.jmrt.2022.05.190

Google Scholar

[46] J. Pasquet, Y. Chevalier, J. Pelletier, E. Couval, D. Bouvier, M.-A. Bolzinger, The contribution of zinc ions to the antimicrobial activity of zinc oxide, Colloid Surf. A-Physicochem. Eng. Asp. 457 (2014) 263-274.

DOI: 10.1016/j.colsurfa.2014.05.057

Google Scholar

[47] P. Ramesh, K. Saravanan, P. Manogar, J. Johnson, E. Vinoth, M. Mayakannan, Green synthesis and characterization of biocompatible zinc oxide nanoparticles and evaluation of its antibacterial potential, Sens. Bio-Sens. Res. 31 (2021) 100399.

DOI: 10.1016/j.sbsr.2021.100399

Google Scholar

[48] T. Ohira, O. Yamamoto, Correlation between antibacterial activity and crystallite size on ceramics, Chem. Eng. Sci. 68 (2012) 355-361.

DOI: 10.1016/j.ces.2011.09.043

Google Scholar

[49] K. Singh, Nancy, M. Bhattu, G. Singh, N.M. Mubarak, J. Singh, Light-absorption-driven photocatalysis and antimicrobial potential of PVP-capped zinc oxide nanoparticles, Sci Rep. 13 (2023) 13886.

DOI: 10.1038/s41598-023-41103-7

Google Scholar

[50] S.G. Bekele, D.D. Ganta, M. Endashaw, Green synthesis and characterization of zinc oxide nanoparticles using Monoon longifolium leave extract for biological applications, Discov. Chem. 1 (2024) 5.

DOI: 10.1007/s44371-024-00007-9

Google Scholar

[51] A. Kumar, M. Bhasin, M. Chitkara, Morphological analysis and grain size distribution of SnO2 nanoparticles via digital image processing across diverse calcination temperatures, J. Microsc. 292 (2023) 123-134.

DOI: 10.1111/jmi.13241

Google Scholar

[52] R. Haddi, A.M. El Kharraz, M.I. Kerroumi, Green Synthesis of Zinc Oxide Nanoparticles Using Pistacia lentiscus L. Leaf Extact and Evaluating their Antioxydant and Antibacterial Properties, Nano Biomed. Eng. 16 (2024) 232-247.

DOI: 10.26599/nbe.2024.9290056

Google Scholar

[53] A. Joseph Anthuvan, K. Kumaravel, V. Chinnuswamy, Synergetic effect of hierarchical zinc oxide (ZnO) nanostructure with enhanced adsorption and antibacterial action towards waterborne detrimental contaminants, Appl. Nanosci. 11 (2021) 2181-2198.

DOI: 10.1007/s13204-021-01967-5

Google Scholar

[54] N.B. Raj, N.T. Pavithra Gowda, O.S. Pooja, B. Purushotham, M.R.A. Kumar, S.K. Sukrutha, C.R. Ravikumar, H.P. Nagaswarupa, H.C.A. Murthy, S.B. Boppana, Harnessing ZnO nanoparticles for antimicrobial and photocatalytic activities, J. Photochem. Photobiol. 6 (2021) 100021.

DOI: 10.1016/j.jpap.2021.100021

Google Scholar

[55] K. Elumalai, S. Velmurugan, Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachta indica (L.), Appl. Surf. Sci. 345 (2015) 329-336.

DOI: 10.1016/j.apsusc.2015.03.176

Google Scholar

[56] E.K. Droepenu, E. Amenyogbe, M.A. Boatemaa, E. Opoku, Study of the antimicrobial activity of zinc oxide nanostructures mediated by two morphological structures of leaf extracts of Eucalyptus radiata, Heliyon, 10 (2024) e25590.

DOI: 10.1016/j.heliyon.2024.e25590

Google Scholar

[57] H.K. Abdelhakim, E.R. El‐Sayed, F.B. Rashidi, Biosynthesis of zinc oxide nanoparticles with antimicrobial, anticancer, antioxidant and photocatalytic activities by the endophytic Alternaria tenuissima, J. Appl. Microbiol. 128 (2020) 1634-1646.

DOI: 10.1111/jam.14581

Google Scholar

[58] G.S. Thirumoorthy, O. Balasubramaniam, P. Kumaresan, P. Muthusamy, K. Subramani, Tetraselmis indica Mediated Green Synthesis of Zinc Oxide (ZnO) Nanoparticles and Evaluating Its Antibacterial, Antioxidant, and Hemolytic Activity, Bionanoscience. 11 (2021) 172-181.

DOI: 10.1007/s12668-020-00817-y

Google Scholar

[59] A.M. Abdo, A. Fouda, A.M. Eid, N.M. Fahmy, A.M. Elsayed, A.M. Khalil, O.M. Alzahrani, A.F. Ahmed, A.M. Soliman, Green Synthesis of Zinc Oxide Nanoparticles (ZnO-NPs) by Pseudomonas aeruginosa and Their Activity against Pathogenic Microbes and Common House Mosquito, Culex pipiens, Materials. 14 (2021) 6983.

DOI: 10.3390/ma14226983

Google Scholar

[60] H. Mohd Yusof, R. Mohamad, U.H. Zaidan, N.A. Abdul Rahman, Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: a review, J. Anim. Sci. Biotechnol.10 (2019) 57.

DOI: 10.1186/s40104-019-0368-z

Google Scholar