[1]
A. Gupta, S. Mumtaz, C.-H. Li, I. Hussain, V.M. Rotello, Combatting antibiotic-resistant bacteria using nanomaterials, Chem. Soc. Rev. 48 (2019) 415-427.
DOI: 10.1039/c7cs00748e
Google Scholar
[2]
D. van Duin, D.L. Paterson, Multidrug-Resistant Bacteria in the Community: An Update, Infect. Dis. Clin. North. Am. 34 (2020) 709-722.
DOI: 10.1016/j.idc.2020.08.002
Google Scholar
[3]
IACG, No Time to Wait: Securing the future from drug-resistant infections. Report to the Secretary-General of the United Nations, 2019.
Google Scholar
[4]
H. Zheng, J. Tang, Y. Wei, X. Deng, Y. Zhang, X. Ma, X. Jiang, Z.P. Xu, H. Liao, Antibacterial properties of cerium oxide nanoparticles: Recent progresses and future challenges , Particuology. 93 (2024) 264-283.
DOI: 10.1016/j.partic.2024.06.017
Google Scholar
[5]
P. Yadav, S. Jain, S. Nimesh, N. Gupta, S. Chatterjee, Grewia tenax bark extract mediated silver nanoparticles as an antibacterial, antibiofilm and antifungal agent, Adv. Nat. Sci.: Nanosci. Nanotechnol. 15 (2024) 015013.
DOI: 10.1088/2043-6262/ad2c79
Google Scholar
[6]
W.M. Saod, M.S. Al-Janaby, E.W. Gayadh, A. Ramizy, L.L. Hamid, Biogenic synthesis of iron oxide nanoparticles using Hibiscus sabdariffa extract: Potential for antibiotic development and antibacterial activity against multidrug-resistant bacteria, Curr. Res. Green Sustainable Chem. 8 (2024) 100397.
DOI: 10.1016/j.crgsc.2024.100397
Google Scholar
[7]
A.B. Younis, V. Milosavljevic, T. Fialova, K. Smerkova, H. Michalkova, P. Svec, P. Antal, P. Kopel, V. Adam, L. Zurek, K. Dolezelikova, Synthesis and characterization of TiO2 nanoparticles combined with geraniol and their synergistic antibacterial activity, BMC Microbiol. 23 (2023) 207.
DOI: 10.1186/s12866-023-02955-1
Google Scholar
[8]
M.R. Kamli, M.A. Malik, V. Srivastava, J.S.M. Sabir, E.H. Mattar, A. Ahmad, Biogenic ZnO Nanoparticles Synthesized from Origanum vulgare Abrogates Quorum Sensing and Biofilm Formation in Opportunistic Pathogen Chromobacterium violaceum, Pharmaceutics. 13 (2021) 1743.
DOI: 10.3390/pharmaceutics13111743
Google Scholar
[9]
A.M. Ferreira, A. Vikulina, M. Loughlin, D. Volodkin, How similar is the antibacterial activity of silver nanoparticles coated with different capping agents?, RSC Adv. 13 (2023) 10542-10555.
DOI: 10.1039/d3ra00917c
Google Scholar
[10]
M.M. Shanwaz, P. Shyam, Anti-bacterial Effect and Characteristics of Gold Nanoparticles (AuNps) Formed with Vitex negundo Plant Extract, Appl. Biochem. Biotechnol. 195 (2023) 1630-1643.
DOI: 10.1007/s12010-022-04217-8
Google Scholar
[11]
N.M.A. Aziz, D.A. Goda, D.I. Abdel-Meguid, E.E. El-Sharouny, N.A. Soliman, A comparative study of the biosynthesis of CuNPs by Niallia circulans G9 and Paenibacillus sp. S4c strains: characterization and application as antimicrobial agents, Microb. Cell Fact. 23 (2024) 156.
DOI: 10.1186/s12934-024-02422-0
Google Scholar
[12]
D.R. Jaishi, I. Ojha, G. Bhattarai, R. Baraili, I. Pathak, D.R. Ojha, D.K. Shrestha, K.R. Sharma, Plant-mediated synthesis of zinc oxide (ZnO) nanoparticles using Alnus nepalensis D. Don for biological applications. Heliyon, 10 (2024) e39255.
DOI: 10.1016/j.heliyon.2024.e39255
Google Scholar
[13]
I.A. Amar, S.A. Shamsi, R.M. Saheem, A.A. Altawati, M.A. Abdulkarim, M.A. Abdulqadir, I.A. Abdalsamed, Surfactant-Assisted Co-Precipitation Synthesis of Ca-Doped Ceria Nanoparticles for Antibacterial Applications, Adv. J. Chem. A, 4 (2021) 10-21.
Google Scholar
[14]
I.A. Amar, S.S. Kanah, H.A. Hijaz, M.A. Abdulqadir, S.A. Shamsi, I.A. Abdalsamed, M.A. Samba, Surfactant-assisted sol-gel synthesis of zinc ferrite magnetic nanoparticles for oil spills cleanup from seawater and antibacterial activity applications, World J. Eng. 20 (2023) 713-721.
DOI: 10.1108/wje-10-2021-0605
Google Scholar
[15]
I.A. Amar, M.A. Abdulqadir, A. Benettayeb, B. Lal, S.A. Shamsi, A. Hosseini-Bandegharaei, Cerium-Doped Calcium Ferrite for Malachite Green Dye Removal and Antibacterial Activities Chem. Afr. 7 (2024) 1423-1441.
DOI: 10.1007/s42250-023-00834-w
Google Scholar
[16]
Y.H.I. Mohammed, S. Alghamdi, B. Jabbar, D. Marghani, S. Beigh, A.S. Abouzied, N.E. Khalifa, W.M.A. Khojali, B. Huwaimel, D.H.M. Alkhalifah, W.N. Hozzein, Green Synthesis of Zinc Oxide Nanoparticles Using Cymbopogon citratus Extract and Its Antibacterial Activity, ACS Omega. 8 (2023) 32027-32042.
DOI: 10.1021/acsomega.3c03908
Google Scholar
[17]
M.Y. Al-darwesh, S.S. Ibrahim, M.A. Mohammed, A review on plant extract mediated green synthesis of zinc oxide nanoparticles and their biomedical applications, Results Chem. 7 (2024) 101368.
DOI: 10.1016/j.rechem.2024.101368
Google Scholar
[18]
H. Agarwal, S. Venkat Kumar, S. Rajeshkumar, A review on green synthesis of zinc oxide nanoparticles – An eco-friendly approach. Resour.-Effic. Technol. 3 (2017) 406-413.
DOI: 10.1016/j.reffit.2017.03.002
Google Scholar
[19]
K. Kisimba, A. Krishnan, M. Faya, K. Byanga, K. Kasumbwe, K. Vijayakumar, R. Prasad, Synthesis of Metallic Nanoparticles Based on Green Chemistry and Their Medical Biochemical Applications: Synthesis of Metallic Nanoparticles, J. Renewable Mater. 11 (2023) 2575-2591.
DOI: 10.32604/jrm.2023.026159
Google Scholar
[20]
J. Gangwar, B. Balasubramanian, A. Pratap Singh, A. Meyyazhagan, M. Pappuswamy, A.M. Alanazi, K.R.R. Rengasamy, J. Kadanthottu Sebastian, Biosynthesis of zinc oxide nanoparticles mediated by Strobilanthes hamiltoniana: Characterizations, and its biological applications , Kuwait J Sci. 51 (2024) 100102.
DOI: 10.1016/j.kjs.2023.07.008
Google Scholar
[21]
D.K. Takcı, M.S. Ozdenefe, T. Huner, H.A.M. Takcı, Plant-mediated green route to the synthesis of zinc oxide nanoparticles: in vitro antibacterial potential. J. Aust. Ceram. Soc. (2024).
DOI: 10.1007/s41779-024-01064-0
Google Scholar
[22]
R. Hamed, R.Z. Obeid, R. Abu-Huwaij, Plant mediated-green synthesis of zinc oxide nanoparticles: An insight into biomedical applications, Nanotechnol. Rev. 12 (2023) 20230112.
DOI: 10.1515/ntrev-2023-0112
Google Scholar
[23]
A. Melese, W. Wubet, A. Hussen, K. Mulate, A. Hailekiros, A review on biogenic synthesized zinc oxide nanoparticles: synthesis, characterization, and its applications, Rev. Inorg. Chem. 44 (2024) 303-321.
DOI: 10.1515/revic-2023-0022
Google Scholar
[24]
M. Naseer, U. Aslam, B. Khalid, B. Chen, Green route to synthesize Zinc Oxide Nanoparticles using leaf extracts of Cassia fistula and Melia azadarach and their antibacterial potential, Sci. Rep. 10 (2020) 9055.
DOI: 10.1038/s41598-020-65949-3
Google Scholar
[25]
T.S. Aldeen, H.E. Ahmed Mohamed, M. Maaza, ZnO nanoparticles prepared via a green synthesis approach: Physical properties, photocatalytic and antibacterial activity, J. Phys. Chem. Solids. 160 (2022) 110313.
DOI: 10.1016/j.jpcs.2021.110313
Google Scholar
[26]
S.S. Sana, R. Vadde, R. Kumar, S.K. Arla, A.R. Somala, K.S.V. Krishna Rao, Z. Zhijun, V.K.N. Boya, K. Mondal, N. Mamidi, Eco-friendly and facile production of antibacterial zinc oxide nanoparticles from Grewia flavescens (G. flavescens) leaf extract for biomedical applications, J. Drug Delivery Sci. Technol. 80 (2023) 104186.
DOI: 10.1016/j.jddst.2023.104186
Google Scholar
[27]
M.F. Islam, S. islam, M.A.S. Miah, A.K.O. Huq, A.K. Saha, Z.J. Mou, M.M.H. Mondol, M.N.I. Bhuiyan, Green synthesis of zinc oxide nano particles using Allium cepa L. waste peel extracts and its antioxidant and antibacterial activities, Heliyon, 10 (2024) e25430.
DOI: 10.1016/j.heliyon.2024.e25430
Google Scholar
[28]
A. Fouda, E. Saied, A.M. Eid, F. Kouadri, A.M. Alemam, M.F. Hamza, M. Alharbi, A. Elkelish, S.E.-D. Hassan, Green Synthesis of Zinc Oxide Nanoparticles Using an Aqueous Extract of Punica granatum for Antimicrobial and Catalytic Activity, J. Funct. Biomater. 14 (2023) 205.
DOI: 10.3390/jfb14040205
Google Scholar
[29]
S. Faisal, H. Jan, S.A. Shah, S. Shah, A. Khan, M.T. Akbar, M. Rizwan, F. Jan, Wajidullah, N. Akhtar, A. Khattak, S. Syed, Green Synthesis of Zinc Oxide (ZnO) Nanoparticles Using Aqueous Fruit Extracts of Myristica fragrans: Their Characterizations and Biological and Environmental Applications, ACS Omega. 6 (2021) 9709-9722.
DOI: 10.1021/acsomega.1c00310
Google Scholar
[30]
V. Sharma, G. Kumar, P. Kumar, D. Kumar, M. Nemiwal, Green Synthesis of ZnO Nanoparticles from Dysoxylum binectariferum Fruit Extract and Assessment of Antimicrobial Potential, ChemistrySelect, 9 (2024) e202402125.
DOI: 10.1002/slct.202402125
Google Scholar
[31]
A.E.A. Yagoub, G.M. Al-Shammari, L.N. Al-Harbi, P. Subash-Babu, R. Elsayim, M.A. Mohammed, M.A. Yahya, S.Z.A. Fattiny, Antimicrobial Properties of Zinc Oxide Nanoparticles Synthesized from Lavandula pubescens Shoot Methanol Extract, Appl. Sci. 12 (2022) 11613.
DOI: 10.3390/app122211613
Google Scholar
[32]
M.A.H. Hamami, I.A. Mohamed Ahmed, F.Y. Al-Juhaimi, Y.I. Shoqairan, A.A. AbuDujayn, E.E. Babiker, Utilization of Grewia tenax fruit dried-ground as a preservative and antioxidant in beef burgers, CYTA J Food. 22 (2024) 2341794.
DOI: 10.1080/19476337.2024.2341794
Google Scholar
[33]
A.M.E. Sulieman, A.A. Mariod, Grewia tenax (Guddaim): Phytochemical Constituents, Bioactive Compounds, Traditional and Medicinal Uses, in: A.A. Mariod (Ed.) Wild Fruits: Composition, Nutritional Value and Products, Springer International Publishing, Cham, 2019, pp.165-173.
DOI: 10.1007/978-3-030-31885-7_14
Google Scholar
[34]
M.S. Al-Said, R.A. Mothana, M.O. Al-Sohaibani, S. Rafatullah, Ameliorative Effect of Grewia tenax (Forssk) Fiori Fruit Extract on CCl4–Induced Oxidative Stress and Hepatotoxicity in Rats, J. Food Sci. 76 (2011) T200-T206.
DOI: 10.1111/j.1750-3841.2011.02381.x
Google Scholar
[35]
P. Yadav, M. Singhal, S. Chatterjee, S. Nimesh, N. Gupta, Grewia tenax-Mediated Silver Nanoparticles as Efficient Antibacterial and Antifungal Agents, Nanomater. Nanotechnol. 2024 (2024) 9912599.
DOI: 10.1155/2024/9912599
Google Scholar
[36]
E. Erb, in, https://www.southernafricanplants.net/plantdata_sub.php?Mspec_ID=2814, Accessed: 31-12-2024.
Google Scholar
[37]
J. Gebauer, A. Patzelt, K. Hammer, A. Buerkert, First record of Grewia tenax (Forssk.) Fiori in northern Oman, a valuable fruit producing shrub, Genet. Resour. Crop Evol. 54 (2007) 1153-1158.
DOI: 10.1007/s10722-007-9241-6
Google Scholar
[38]
S.K. Aditha, A.D. Kurdekar, L.A.A. Chunduri, S. Patnaik, V. Kamisetti, Aqueous based reflux method for green synthesis of nanostructures: Application in CZTS synthesis, MethodsX, 3 (2016) 35-42.
DOI: 10.1016/j.mex.2015.12.003
Google Scholar
[39]
J. Jalab, W. Abdelwahed, A. Kitaz, R. Al-Kayali, Green synthesis of silver nanoparticles using aqueous extract of Acacia cyanophylla and its antibacterial activity, Heliyon. 7 (2021) e08033.
DOI: 10.1016/j.heliyon.2021.e08033
Google Scholar
[40]
L. Lajoie, A.-S. Fabiano-Tixier, F. Chemat, Water as Green Solvent: Methods of Solubilisation and Extraction of Natural Products—Past, Present and Future Solutions, Pharmaceuticals. 15 (2022) 1507.
DOI: 10.3390/ph15121507
Google Scholar
[41]
F.H. Abdullah, N.H.H. Abu Bakar, M. Abu Bakar, Low temperature biosynthesis of crystalline zinc oxide nanoparticles from Musa acuminata peel extract for visible-light degradation of methylene blue, Optik. 206 (2020) 164279.
DOI: 10.1016/j.ijleo.2020.164279
Google Scholar
[42]
D. Mutukwa, R.T. Taziwa, L. Khotseng, A Review of Plant-Mediated ZnO Nanoparticles for Photodegradation and Antibacterial Applications, Nanomaterials. 14 (2024) 1182.
DOI: 10.3390/nano14141182
Google Scholar
[43]
S. Donga, S. Chanda, Caesalpinia crista Seeds Mediated Green Synthesis of Zinc Oxide Nanoparticles for Antibacterial, Antioxidant, and Anticancer Activities, BioNanoScience. 12 (2022) 451-462.
DOI: 10.1007/s12668-022-00952-8
Google Scholar
[44]
G.M. Abdelghani, A.B. Ahmed, A.B. Al-Zubaidi, Synthesis, characterization, and the influence of energy of irradiation on optical properties of ZnO nanostructures, Sci. Rep. 12 (2022) 20016.
DOI: 10.1038/s41598-022-24648-x
Google Scholar
[45]
S. Saleem, M.H. Jameel, A. Rehman, M.B. Tahir, M.I. Irshad, Z.Y. Jiang, R.Q. Malik, A.A. Hussain, A.u. Rehman, A.H. Jabbar, A.Y. Alzahrani, M.A. Salem, M.M. Hessien, Evaluation of structural, morphological, optical, and electrical properties of zinc oxide semiconductor nanoparticles with microwave plasma treatment for electronic device applications, J. Mater. Res. Technol. 19 (2022) 2126-2134.
DOI: 10.1016/j.jmrt.2022.05.190
Google Scholar
[46]
J. Pasquet, Y. Chevalier, J. Pelletier, E. Couval, D. Bouvier, M.-A. Bolzinger, The contribution of zinc ions to the antimicrobial activity of zinc oxide, Colloid Surf. A-Physicochem. Eng. Asp. 457 (2014) 263-274.
DOI: 10.1016/j.colsurfa.2014.05.057
Google Scholar
[47]
P. Ramesh, K. Saravanan, P. Manogar, J. Johnson, E. Vinoth, M. Mayakannan, Green synthesis and characterization of biocompatible zinc oxide nanoparticles and evaluation of its antibacterial potential, Sens. Bio-Sens. Res. 31 (2021) 100399.
DOI: 10.1016/j.sbsr.2021.100399
Google Scholar
[48]
T. Ohira, O. Yamamoto, Correlation between antibacterial activity and crystallite size on ceramics, Chem. Eng. Sci. 68 (2012) 355-361.
DOI: 10.1016/j.ces.2011.09.043
Google Scholar
[49]
K. Singh, Nancy, M. Bhattu, G. Singh, N.M. Mubarak, J. Singh, Light-absorption-driven photocatalysis and antimicrobial potential of PVP-capped zinc oxide nanoparticles, Sci Rep. 13 (2023) 13886.
DOI: 10.1038/s41598-023-41103-7
Google Scholar
[50]
S.G. Bekele, D.D. Ganta, M. Endashaw, Green synthesis and characterization of zinc oxide nanoparticles using Monoon longifolium leave extract for biological applications, Discov. Chem. 1 (2024) 5.
DOI: 10.1007/s44371-024-00007-9
Google Scholar
[51]
A. Kumar, M. Bhasin, M. Chitkara, Morphological analysis and grain size distribution of SnO2 nanoparticles via digital image processing across diverse calcination temperatures, J. Microsc. 292 (2023) 123-134.
DOI: 10.1111/jmi.13241
Google Scholar
[52]
R. Haddi, A.M. El Kharraz, M.I. Kerroumi, Green Synthesis of Zinc Oxide Nanoparticles Using Pistacia lentiscus L. Leaf Extact and Evaluating their Antioxydant and Antibacterial Properties, Nano Biomed. Eng. 16 (2024) 232-247.
DOI: 10.26599/nbe.2024.9290056
Google Scholar
[53]
A. Joseph Anthuvan, K. Kumaravel, V. Chinnuswamy, Synergetic effect of hierarchical zinc oxide (ZnO) nanostructure with enhanced adsorption and antibacterial action towards waterborne detrimental contaminants, Appl. Nanosci. 11 (2021) 2181-2198.
DOI: 10.1007/s13204-021-01967-5
Google Scholar
[54]
N.B. Raj, N.T. Pavithra Gowda, O.S. Pooja, B. Purushotham, M.R.A. Kumar, S.K. Sukrutha, C.R. Ravikumar, H.P. Nagaswarupa, H.C.A. Murthy, S.B. Boppana, Harnessing ZnO nanoparticles for antimicrobial and photocatalytic activities, J. Photochem. Photobiol. 6 (2021) 100021.
DOI: 10.1016/j.jpap.2021.100021
Google Scholar
[55]
K. Elumalai, S. Velmurugan, Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachta indica (L.), Appl. Surf. Sci. 345 (2015) 329-336.
DOI: 10.1016/j.apsusc.2015.03.176
Google Scholar
[56]
E.K. Droepenu, E. Amenyogbe, M.A. Boatemaa, E. Opoku, Study of the antimicrobial activity of zinc oxide nanostructures mediated by two morphological structures of leaf extracts of Eucalyptus radiata, Heliyon, 10 (2024) e25590.
DOI: 10.1016/j.heliyon.2024.e25590
Google Scholar
[57]
H.K. Abdelhakim, E.R. El‐Sayed, F.B. Rashidi, Biosynthesis of zinc oxide nanoparticles with antimicrobial, anticancer, antioxidant and photocatalytic activities by the endophytic Alternaria tenuissima, J. Appl. Microbiol. 128 (2020) 1634-1646.
DOI: 10.1111/jam.14581
Google Scholar
[58]
G.S. Thirumoorthy, O. Balasubramaniam, P. Kumaresan, P. Muthusamy, K. Subramani, Tetraselmis indica Mediated Green Synthesis of Zinc Oxide (ZnO) Nanoparticles and Evaluating Its Antibacterial, Antioxidant, and Hemolytic Activity, Bionanoscience. 11 (2021) 172-181.
DOI: 10.1007/s12668-020-00817-y
Google Scholar
[59]
A.M. Abdo, A. Fouda, A.M. Eid, N.M. Fahmy, A.M. Elsayed, A.M. Khalil, O.M. Alzahrani, A.F. Ahmed, A.M. Soliman, Green Synthesis of Zinc Oxide Nanoparticles (ZnO-NPs) by Pseudomonas aeruginosa and Their Activity against Pathogenic Microbes and Common House Mosquito, Culex pipiens, Materials. 14 (2021) 6983.
DOI: 10.3390/ma14226983
Google Scholar
[60]
H. Mohd Yusof, R. Mohamad, U.H. Zaidan, N.A. Abdul Rahman, Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: a review, J. Anim. Sci. Biotechnol.10 (2019) 57.
DOI: 10.1186/s40104-019-0368-z
Google Scholar