[1]
H. Chia and B. Wu, "Recent advances in 3d printing of biomaterials," Journal of Biological Engineering, vol. 9, Mar. 2015.
DOI: 10.1186/s13036-015-0001-4
Google Scholar
[2]
A. Soufivand, N. Abolfathi, A. Hashemi, and S. Lee, "Prediction of mechanical behavior of 3d bioprinted tissue–engineered scaffolds using finite element method (fem) analysis," Additive Manufacturing, vol. 33, p.101181, Mar. 2020.
DOI: 10.1016/j.addma.2020.101181
Google Scholar
[3]
J. Williams, A. Adewunmi, R. Schek, et al., "Bone tissue engineering using polycaprolactone scaffoldsfabricatedviaselectivelasersintering,"Biomaterials,vol.26,p.4817–27,Sep.2005.
DOI: 10.1016/j.biomaterials.2004.11.057
Google Scholar
[4]
F. Tallia, L. Russo, S. Li, et al., "Bouncing and 3d printable hybrids with self–healing properties," Mater. Horiz., vol. 5, p.849–860, 5 2018. DOI: 10.1039/C8MH00027A. [Online]. Available:.
DOI: 10.1039/C8MH00027A
Google Scholar
[5]
B. Duan, E. Kapetanovic, L. Hockaday, and J. Butcher, "3d printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells," Acta biomaterialia, vol. 10, Dec. 2013.
DOI: 10.1016/j.actbio.2013.12.005
Google Scholar
[6]
R. Morrison, S. Hollister, M. Niedner, et al., "Mitigation of tracheobronchomalacia with 3d– printed personalized medical devices in pediatric patients," Science translational medicine, vol. 7, 285ra64, Apr. 2015.
DOI: 10.1126/scitranslmed.3010825
Google Scholar
[7]
W. Lee, J. C. Debasitis, V. K. Lee, et al., "Multi–layered culture of human skin fibroblasts and keratinocytes through three–dimensional freeform fabrication," Biomaterials, vol. 30, no. 8, p.1587–1595, 2009, ISSN: 0142–9612. DOI:https://doi.org/10.1016/j.biomaterials. 2008.12.009. [Online]. Available: https://www.sciencedirect.com/science/article/ pii/S0142961208009800.
DOI: 10.1016/j.biomaterials.2008.12.009
Google Scholar
[8]
J. J. Chung, H. Im, S. H. Kim, J. W. Park, and Y. Jung, "Toward biomimetic scaffolds for tissue engineering: 3d printing techniques in regenerative medicine," Frontiers in bioengineering and biotechnology, vol. 8, p.586406, 2020, ISSN: 2296–4185. DOI: 10.3389/fbioe.2020. 586406. [Online]. Available: https://europepmc.org/articles/PMC7671964.
DOI: 10.3389/fbioe.2020.586406
Google Scholar
[9]
ASTM, "Iso/astm 52900:2021; additive manufacturing — general principles— terminology," Standard, 2021.
DOI: 10.31030/3290011
Google Scholar
[10]
E. De Giglio, M. A. Bonifacio, A. Ferreira, et al., "Multi-compartment scaffold fabricated via 3d-printing as in vitro co-culture osteogenic model," Scientific Reports, vol. 8, Oct. 2018.
DOI: 10.1038/s41598-018-33472-1
Google Scholar
[11]
S. Todros, M. Todesco, and A. Bagno, "Biomaterials and their biomedical applications: From replacement to regeneration," Processes, vol. 9, Nov. 2021, ISSN: 2227–9717. DOI: 10.3390/ pr9111949. [Online]. Available: https://www.mdpi.com/2227--9717/9/11/1949.
DOI: 10.3390/pr9111949
Google Scholar
[12]
M. DÁngelo, E. Benedetti, M. G. Tupone, et al., "The role of stiffness in cell reprogramming: A potential role for biomaterials in inducing tissue regeneration," Cells, vol. 8, p.1036, Sep. 2019.
DOI: 10.3390/cells8091036
Google Scholar
[13]
M. S. B. Reddy, D. Ponnamma, R. Choudhary, and K. K. Sadasivuni, "A comparative review of natural and synthetic biopolymer composite scaffolds," Polymers, vol. 13, no. 7, 2021, ISSN: 2073-4360. DOI: 10.3390/polym13071105. [Online]. Available: https://www.mdpi.com/ 2073-4360/13/7/1105.
DOI: 10.3390/polym13071105
Google Scholar
[14]
M. Chelu and A. M. Musuc, "Advanced biomedical applications of multifunctional natural and synthetic biomaterials," Processes, vol. 11, no. 9, 2023, ISSN: 2227-9717. DOI: 10.3390/ pr11092696. [Online]. Available: https://www.mdpi.com/2227-9717/11/9/2696.
DOI: 10.3390/pr11092696
Google Scholar
[15]
R. Breuls, T. Jiya, and T. Smit, "Scaffold stiffness influences cell behavior: Opportunities for skeletal tissue engineering," The open orthopaedics journal, vol. 2, p.103–9, Feb. 2008.
DOI: 10.2174/1874325000802010103
Google Scholar
[16]
C. Guimaraes, L. Gasperini, A. Marques, and R. L. Reis, "The stiffness of living tissues and its implications for tissue engineering," Nature Reviews Materials, vol. 5, Feb. 2020.
DOI: 10.1038/s41578-019-0169-1
Google Scholar
[17]
X. Lu, Z. Ding, F. Xu, Q. Lu, and D. Kaplan, "Subtle regulation of scaffold stiffness for optimized control of cell behavior," ACS Applied Bio Materials, vol. 2, Jun. 2019. DOI: 10.1021/ acsabm.9b00445.
DOI: 10.1021/acsabm.9b00445
Google Scholar
[18]
A. Gleadall, D. Visscher, J. Yang, D. Thomas, and J. Segal, "Review of additive manufactured tissue engineering scaffolds: Relationship between geometry and performance," Burns & Trauma, vol. 6, Jul. 2018, ISSN: 2321-3876.
DOI: 10.1186/s41038-018-0121-4
Google Scholar
[19]
T. Luo, B. Tan, L. Zhu, Y. Wang, and J. Liao, "A review on the design of hydrogels with different stiffness and their effects on tissue repair," Frontiers in Bioengineering and Biotechnology, vol. 10, 2022, ISSN: 2296-4185. DOI: [Online]. Available: https://www.frontiersin.org/articles/.
DOI: 10.3389/fbioe.2022.817391
Google Scholar
[20]
P. Mardling, A. Alderson, N. Jordan–Mahy, and C. L. Le Maitre, "The use of auxetic materials in tissue engineering," Biomater. Sci., vol. 8, p.2074–2083, 8 2020. DOI: 10.1039/ C9BM01928F. [Online]. Available:.
DOI: 10.1039/C9BM01928F
Google Scholar
[21]
V. Lvov, F. Senatov, A. Veveris, V. Skrybykina, and A. Diaz Lantada, "Auxetic metamaterials for biomedical devices: Current situation, main challenges, and research trends," Materials, vol. 15, p.1–28, Feb. 2022.
DOI: 10.3390/ma15041439
Google Scholar
[22]
C. Körner and Y. Liebold–Ribeiro, "A systematic approach to identify cellular auxetic materials," Smart Materials and Structures, vol. 24, Feb. 2015. DOI: 10.1088/0964--1726/24/2/ 025013.
DOI: 10.1088/0964-1726/24/2/025013
Google Scholar
[23]
M. Kapnisi, C. Mansfield, C. Marijon, et al., "Auxetic cardiac patches with tunable mechanical and conductive properties toward treating myocardial infarction," Advanced Functional Materials, vol. 28, May 2018.
DOI: 10.1002/adfm.201800618
Google Scholar
[24]
J. Trainini, L. Jorge, M. Beraudo, et al., "Cardiac helical function. fulcrum and torsion," Online Journal of Cardiology Research & Reports, vol. 7, p.1–15, Jan. 2023. DOI: 10.33552/ OJCRR.2023.07.000653.
DOI: 10.33552/ojcrr.2023.07.000653
Google Scholar
[25]
R. Gatt, M. Vella Wood, A. Gatt, et al., "Negative poisson's ratios in tendons: An unexpected mechanical response," Acta biomaterialia, vol. 24, Jun. 2015. DOI: 10.1016/j.actbio. 2015.06.018.
DOI: 10.1016/j.actbio.2015.06.018
Google Scholar
[26]
J. Warner, A. Gillies, H. Hwang, H. Zhang, R. Lieber, and S. Chen, "3d–printed biomaterials with regional auxetic properties," Journal of the Mechanical Behavior of Biomedical Materials, vol. 76, May 2017.
DOI: 10.1016/j.jmbbm.2017.05.016
Google Scholar
[27]
S. Wu, J. Liu, Y. Qi, et al., "Tendon–bioinspired wavy nanofibrous scaffolds provide tunable anisotropy and promote tenogenesis for tendon tissue engineering," Materials Science and Engineering: C, vol. 126, p.112181, 2021, ISSN: 0928–4931. DOI: https://doi.org/10. 1016/j.msec.2021.112181. [Online]. Available: https://www.sciencedirect.com/ science/article/pii/S0928493121003209.
DOI: 10.1016/j.msec.2021.112181
Google Scholar
[28]
M. Shirzad, A. Zolfagharian, M. Bodaghi, and S. Y. Nam, "Auxetic metamaterials for bone– implanted medical devices: Recent advances and new perspectives," European Journal of Mechanics – A/Solids, vol. 98, p.104905, Dec. 2022. DOI: 10.1016/j.euromechsol.2022. 104905.
DOI: 10.1016/j.euromechsol.2022.104905
Google Scholar
[29]
J. Liu, X. Yao, Z. Wang, et al., "A flexible porous chiral auxetic tracheal stent with ciliated epithelium," Acta Biomaterialia, vol. 124, p.153–165, Apr. 2021. DOI: 10.1016/j.actbio. 2021.01.044.
DOI: 10.1016/j.actbio.2021.01.044
Google Scholar
[30]
F. Nappi, Angelo, R. Carotenuto, et al., "Stress–shielding, growth and remodeling of pulmonary artery reinforced with scaffold copolymer and transposed into aortic position," Biomechanics and Modeling in Mechanobiology, vol. 15, Oct. 2016.
DOI: 10.1007/s10237-015-0749-y
Google Scholar
[31]
K. Knight, P. Moalli, and S. Abramowitch, "Preventing mesh pore collapse by designing mesh poreswithauxeticgeometries:Acomprehensiveevaluationviacomputationalmodeling,"Journal of Biomechanical Engineering, vol. 140, Jan. 2018.
DOI: 10.1115/1.4039058
Google Scholar
[32]
T. Li, Y. Chen, X. Hu, Y. Li, and L. Wang, "Exploiting negative poissonś ratio to design 3d–printed composites with enhanced mechanical properties," Materials & design, vol. 142, p.247–258, Mar. 2018.
DOI: 10.1016/j.matdes.2018.01.034
Google Scholar
[33]
Y. Yan, Y. Li, L. Song, and C. Zeng, "Pluripotent stem cell expansion and neural differentiation in 3–d scaffolds of tunable poisson's ratio," Acta Biomaterialia, vol. 49, Nov. 2016. DOI: 10. 1016/j.actbio.2016.11.025.
DOI: 10.1016/j.actbio.2016.11.025
Google Scholar
[34]
N. Novak, M. Vesenjak, and Z. Ren, "Auxetic cellular materials - a review," Strojniški vestnik – Journal of Mechanical Engineering, vol. 62, p.485–493, Sep. 2016.
DOI: 10.5545/sv-jme.2016.3656
Google Scholar
[35]
H. Chen, D. Baptista, G. Criscenti, et al., "From fiber curls to mesh waves: A platform for fabrication of hierarchically structured nanofibers mimicking natural tissue formation," Nanoscale, vol. 11, Jun. 2019.
DOI: 10.1039/C8NR10108F
Google Scholar
[36]
B. Ma, J. Xie, J. Jiang, F. Shuler, and D. Bartlett, "Rational design of nanofiber scaffolds for orthopedic tissue repair and regeneration," Nanomedicine (London, England), vol. 8, p.1459– 81, Sep. 2013.
DOI: 10.2217/nnm.13.132
Google Scholar
[37]
S. Camarero Espinosa, H. Yuan, P. Emans, and L. Moroni, "Mimicking the graded wavy structure of the anterior cruciate ligament," Advanced Healthcare Materials, Mar. 2023. DOI: 10. 1002/adhm.202203023.
DOI: 10.1002/adhm.202203023
Google Scholar
[38]
S. Ji and M. Guvendiren, "3d printed wavy scaffolds enhance mesenchymal stem cell osteogenesis," Micromachines, vol. 11, p.31, Dec. 2019.
DOI: 10.3390/mi11010031
Google Scholar
[39]
I. Zein, D. W. Hutmacher, K. C. Tan, and S. H. Teoh, "Fused deposition modeling of novel scaffold architectures for tissue engineering applications," Biomaterials, vol. 23, no. 4, p.1169– 1185, 2002, ISSN: 0142-9612. DOI: https://doi.org/10.1016/S0142-9612(01)002320. [Online]. Available: https://www.sciencedirect.com/science/article/pii/ S0142961201002320.
DOI: 10.1016/s0142-9612(01)00232-0
Google Scholar
[40]
R. Sala, S. Regondi, and R. Pugliese, "Design data and finite element analysis of 3d printed poly(ε–caprolactone)–based lattice scaffolds: Influence of type of unit cell, porosity, and nozzle diameter on the mechanical behavior," Eng, vol. 3, p.9–23, 2022, ISSN: 2673– 4117. DOI: 10.3390/eng3010002. [Online]. Available: https://www.mdpi.com/2673-4117/3/1/2.
DOI: 10.3390/eng3010002
Google Scholar
[41]
A. Gleadall, I. Ashcroft, and J. Segal, "Volco: A predictive model for 3d printed microarchitecture," Additive Manufacturing, vol. 21, Apr. 2018.
DOI: 10.1016/j.addma.2018.04.004
Google Scholar
[42]
P. Yadav, G. Beniwal, and K. Saxena, "A review on pore and porosity in tissue engineering," Materials Today: Proceedings, vol. 44, Feb. 2021.
DOI: 10.1016/j.matpr.2020.12.661
Google Scholar
[43]
J.HernandezandK.Woodrow,"Medicalapplicationsofporousbiomaterials:Featuresofporosity and tissuespecific implications for biocompatibility," Advanced Healthcare Materials, vol. 11, Feb. 2022.
DOI: 10.1002/adhm.202102087
Google Scholar
[44]
W. J. Hendrikson, C. A. van Blitterswijk, J. Rouwkema, and L. Moroni, "The use of finite element analyses to design and fabricate three-dimensional scaffolds for skeletal tissue engineering," Frontiers in Bioengineering and Biotechnology, vol. 5, 2017. [Online]. Available: https://api.semanticscholar.org/CorpusID:20176421.
DOI: 10.3389/fbioe.2017.00030
Google Scholar
[45]
C. Murphy and F. O'Brien, "Understanding the effect of mean pore size on cell activity in collagen-glycosaminoglycan scaffolds," Cell adhesion & migration, vol. 4, p.377–81, Jul. 2010.
DOI: 10.4161/cam.4.3.11747
Google Scholar
[46]
I. Buj-Corral, A. Bagheri, and O. Petit-Rojo, "3d printing of porous scaffolds with controlled porosity and pore size values," Materials, vol. 11, 2018. [Online]. Available: https://api. semanticscholar.org/CorpusID:52099828.
DOI: 10.3390/ma11091532
Google Scholar
[47]
Q. L. Loh and C. Choong, "Three-dimensional scaffolds for tissue engineering applications: Role of porosity and pore size," Tissue engineering. Part B, Reviews, vol. 19, May 2013.
DOI: 10.1089/ten.TEB.2012.0437
Google Scholar
[48]
T. M. Inc., "Detect kaze features," 2023. [Online]. Available: https://es.mathworks.com/ help/vision/ref/detectkazefeatures.html#References.
Google Scholar
[49]
T. M. Inc., "Bwmorph - branchpoint," 2023. [Online]. Available: https://es.mathworks. com/help/images/ref/bwmorph.html.
Google Scholar
[50]
C. Smith, R. Wootton, and K. Evans, "Interpretation of experimental data for poissonś ratio of highly nonlinear materials," Exp Mech, vol. 39, p.356–362, 1999. DOI: https://doi.org/.
DOI: 10.1007/BF02329817
Google Scholar
[51]
W. Saltzman and R. Langer, "Transport rates of proteins in porous materials with known microgeometry," Biophysical Journal, vol. 55, no. 1, p.163–171, 1989, ISSN: 0006-3495. DOI: https://doi.org/10.1016/S0006-3495(89)82788-2. [Online]. Available: https: //www.sciencedirect.com/science/article/pii/S0006349589827882.
DOI: 10.1016/s0006-3495(89)82788-2
Google Scholar
[52]
I. Bružauskaitė, D. Bironaitė, and E. Bagdonas E.and Bernotienė, "Scaffolds and cells for tissue regeneration: Different scaffold pore sizes–different cell effects," Cytotechnology, vol. 68(3), p.355–369, 2016, ISSN: 2214-8604.
DOI: 10.1007/s10616-015-9895-4
Google Scholar
[53]
Y. Chen, T. Li, F. Scarpa, and L. Wang, "Lattice metamaterials with mechanically tunable poisson's ratio for vibration control," Physical Review Applied, vol. 7, p.024012, Jan. 2017.
DOI: 10.1103/PhysRevApplied.7.024012
Google Scholar
[54]
Z. Yuan and Z. Cui, "Micropolar homogenization of wavy tetra–chiral and tetra–achiral lattices to identify axial–shear coupling and directional negative poissonś ratio," Materials & Design, vol. 201, p.109483, Jan. 2021.
DOI: 10.1016/j.matdes.2021.109483
Google Scholar
[55]
M. Lei, W. Hong, Z. Zhao, et al., "3d printing of auxetic metamaterials with digitally reprogrammable shape," ACS Applied Materials & Interfaces, vol. 11, May 2019. DOI: 10.1021/ acsami.9b06081.
DOI: 10.1021/acsami.9b06081
Google Scholar
[56]
G. Singh and A. Chanda, "Mechanical properties of whole–body soft human tissues: A review," Biomedical Materials, vol. 16, p.062004, Nov. 2021.
DOI: 10.1088/1748-605x/ac2b7a
Google Scholar
[57]
G. Pascoletti, M. Di Nardo, G. Fragomeni, et al., "Dynamic characterization of the biomechanical behaviour of bovine ovarian cortical tissue and its short–term effect on ovarian tissue and follicles," Materials, vol. 13, p.3759, Aug. 2020.
DOI: 10.3390/ma13173759
Google Scholar
[58]
G. Garoffolo and M. Pesce, "Mechanotransduction in the cardiovascular system: From developmental origins to homeostasis and pathology," Cells, vol. 8, Dec. 2019. DOI: 10.3390/ cells8121607.
DOI: 10.3390/cells8121607
Google Scholar
[59]
A. Gleadall, "Fullcontrol gcode designer: Open-source software for unconstrained design in additive manufacturing," Additive Manufacturing, vol. 46, p.102–109, 2021, ISSN: 22148604. DOI: https://doi.org/10.1016/j.addma.2021.102109. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2214860421002748.
DOI: 10.1016/j.addma.2021.102109
Google Scholar
[60]
Z. Niu and H. Li, "Research and analysis of threshold segmentation algorithms in image processing," Journal of Physics: Conference Series, vol. 1237, no. 2, p.022122, Jun. 2019. DOI: [Online]. Available: https://dx.doi.org/.
DOI: 10.1088/1742-6596/1237/2/022122
Google Scholar