Characterization and Degradation Behavior of Polylactic Acid Composite Incorporated with Egg-Shell Derived Hydroxyapatite for Bone Repair

Article Preview

Abstract:

This study explored eggshells as an eco-friendly and cost-effective material for synthesizing hydroxyapatite. The phase compositions and morphological structure of polylactic acid composite with and without co-doped hydroxyapatite addition via a melt blending approach were evaluated. Furthermore, the biodegradation profile of the polylactic acid composite in phosphate buffer solution was studied. The concentrations of PLA/HAp, PLA/7.5MgO-7.5ZnO, and PLA/12.5MgO-2.5ZnO samples, respectively, were examined in this study. The results of morphological evaluation showed a well-distributed irregular spherical phase of hydroxyapatite. Meanwhile, the co-doped hydroxyapatite phases have variations in sizes and shapes. The polylactic acid composites showed fractured, rough, and honeycomb surfaces with interconnected pores suitable for cell propagation and enhancement, and the elemental composition proved precipitation of apatite formation. Characteristics of absorption bands of the hydroxyapatite, magnesium, zinc, and polylactic acid were present, respectively. The XRD spectra confirmed the presence of crystalline and semi-crystalline structures with percent crystallinity of 48.57%, 56.64%, and 60.08%, respectively. Meanwhile, the addition of the co-doped hydroxyapatite results in shifts in the 2θ angles of the crystal phases. The biodegradation study revealed the beneficial role of reinforcing polylactic acid composite with biogenic hydroxyapatite and hybrid doped hydroxyapatite as fillers and their synergetic effect with the pH of 7.08±0.21, 6.63±0.46, & 7.28±0.44, the porosity of 52.26±7.29, 48.57±6.74, & 43.72±5.07 %, and the degradation rate (weight loss) of 51.83±7.03, 48.16±6.85, & 43.66±5.46, respectively. Findings revealed that the current study aligns with the sustainable biodegradable composite used in bone tissue repair and hence contributed towards sustainable material without polluting the environment.

You might also be interested in these eBooks

Info:

Pages:

81-104

Citation:

Online since:

June 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. A. Allo, D. O. Costa, S. J. Dixon, K. Mequanint, A. S. Rizkalla. Bioactive and biodegradable nanocomposites and hybrid biomaterials for bone regeneration, J Funct. Biomater. 3(2), (2012), 432–463, 2012.

DOI: 10.3390/jfb3020432

Google Scholar

[2] M. Abbas, M. S. Alqahtani, R. Alhifzi. Recent Developments in Polymer Nanocomposites for Bone Regeneration, Int J Mol. Sci. 24(4), (2023), 3312.

DOI: 10.3390/ijms24043312

Google Scholar

[3] S. Sagadevan, R. Schirhagl, M. Z. Rahman, M. F. Bin Ismail, J. A. Lett, I. Fatimah, N. H. Mohd Kaus, W. C. Oh. Recent advancements in polymer matrix nanocomposites for bone tissue engineering applications, J Drug Deliv. Sci. Technol. 82, (2023), 104313.

DOI: 10.1016/j.jddst.2023.104313

Google Scholar

[4] I. Antoniac, M. Miculescu, V. Mănescu, A. Stere, P. H. Quan, G. Păltânea, A. Robu, K. Earar. Magnesium-based alloys used in orthopedic surgery, Materials. 15(3), (2022), 1148.

DOI: 10.3390/ma15031148

Google Scholar

[5] B. Jahani, K. Meesterb, X. Wanga, A. Brooksc. Biodegradable Magnesium-Based alloys for bone repair applications: Prospects and challenges, Biomed Sci Instrum. 56(2), (2020), 292–304.

Google Scholar

[6] S. Sakka, J. Bouaziz, F. Ben. Mechanical Properties of Biomaterials Based on Calcium Phosphates and Bioinert Oxides for Applications in Biomedicine, in: Advances in Biomaterials Science and Biomedical Applications, R. Pignatello, Ed., InTech, 2013.

DOI: 10.5772/53088

Google Scholar

[7] P. Kobbe, M. Laubach, D. W. Hutmacher, H. Alabdulrahman, R. M. Sellei, F. Hildebrand. Convergence of scaffold-guided bone regeneration and RIA bone grafting for the treatment of a critical-sized bone defect of the femoral shaft, Eur. J Med. Res. 25(1), (2020), 70.

DOI: 10.21203/rs.3.rs-115334/v1

Google Scholar

[8] A. Magiera, J. Markowski, E. Menaszek, J. Pilch, S. Blazewicz. PLA-Based Hybrid and Composite Electrospun Fibrous Scaffolds as Potential Materials for Tissue Engineering, J Nanomater. 2017, (2017), 1–11.

DOI: 10.1155/2017/9246802

Google Scholar

[9] R. Song, M. Murphy, C. Li, K. Ting, C. Soo, Z. Zheng. Current development of biodegradable polymeric materials for biomedical applications, Drug Des. Devel. Ther. 12, (2018), 3117–3145.

DOI: 10.2147/dddt.s165440

Google Scholar

[10] F. Fattahi, A. Khoddami, O. Avinc. Poly (lactic acid)(PLA) nanofibers for bone tissue engineering, J. Text. Polym. 7(2), (2019), 47–64.

Google Scholar

[11] L. Li, J. M. Stiadle, H. K. Lau, A. B. Zerdoum, X. Jia, S. L. Thibeault, K. L. Kiick. Tissue engineering-based therapeutic strategies for vocal fold repair and regeneration, Biomaterials, 108, (2016), 91–110.

DOI: 10.1016/j.biomaterials.2016.08.054

Google Scholar

[12] T. Monia. β-TCP/DCPD-PHBV (40%/60%): biomaterial made from bioceramic and biopolymer for bone regeneration; investigation of intrinsic properties, J. Appl. Biomater. Funct. Mater. 20, (2022), 22808000221088950.

DOI: 10.1177/22808000221088950

Google Scholar

[13] M. Trimeche. Biomaterials for bone regeneration: an overview, Biomater Tissue Technol. 1, (2017), 1–5.

Google Scholar

[14] H. K. Lau. Resilin-like polypetide-based microstructured hydrogels via aqueous-based liquid-liquid phase separation for tissue engineering applications, University of Delaware, 2018.

Google Scholar

[15] E. Hartley, H. Moon, A. Neves. Biodegradable Synthetic Polymers for Tissue Engineering: A Mini-review, Reinvention Int. J. Undergrad. Res. 15(1), (2022)

DOI: 10.31273/reinvention.v15i1.801

Google Scholar

[16] E. E. Tănase, M. Râpă, O. Popa. Biopolymers based on renewable resources-a review, Sci. Bull. Ser. F Biotechnol. 2014, (2014), 188–195.

Google Scholar

[17] C. Wright, A. Banerjee, X. Yan, W. K. Storms-Miller, C. Pugh. Synthesis of Functionalized Poly(lactic acid) Using 2-Bromo-3-hydroxypropionic Acid, Macromolecules, 49(6), (2016), 2028–2038.

DOI: 10.1021/acs.macromol.6b00331

Google Scholar

[18] J. Radwan-Pragłowska, Ł. Janus, M. Piątkowski, D. Bogdał, D. Matysek. 3D hierarchical, nanostructured chitosan/PLA/HA scaffolds doped with TiO2/Au/Pt NPs with tunable properties for guided bone tissue engineering, Polymers, 12(4), (2020), 792.

DOI: 10.3390/polym12040792

Google Scholar

[19] S. Saravanan, S. Vimalraj, G. Lakshmanan, A. Jindal, D. Sundaramurthi, J. Bhattacharya. Chitosan-based biocomposite scaffolds and hydrogels for bone tissue regeneration, Mar.-Deriv. Biomater. Tissue Eng. Appl. (2019), 413–442.

DOI: 10.1007/978-981-13-8855-2_18

Google Scholar

[20] S. Mondal, B. Mondal, A. Dey, S. S. Mukhopadhyay. Studies on processing and characterization of hydroxyapatite biomaterials from different bio wastes, J Min. Mater Charact Eng. 11(1), (2012), 55–67.

DOI: 10.4236/jmmce.2012.111005

Google Scholar

[21] S. Hussain, Z. A. Shah, K. Sabiruddin, A. K. Keshri. Characterization and tribological behaviour of Indian clam seashell-derived hydroxyapatite coating applied on titanium alloy by plasma spray technique, J. Mech. Behav. Biomed. Mater. 137, (2023), 105550.

DOI: 10.1016/j.jmbbm.2022.105550

Google Scholar

[22] S. Hussain, K. Sabiruddin. Synthesis of eggshell based hydroxyapatite using hydrothermal method, IOP Conf. Ser. Mater. Sci. Eng. 1189(1), (2021), 012024.

DOI: 10.1088/1757-899x/1189/1/012024

Google Scholar

[23] M. Taherimehr, H. YousefniaPasha, R. Tabatabaeekoloor, E. Pesaranhajiabbas. Trends and challenges of biopolymer‐based nanocomposites in food packaging, Compr. Rev. Food Sci. Food Saf. 20(6), (2021), 5321–5344.

DOI: 10.1111/1541-4337.12832

Google Scholar

[24] S. Kulanthaivel, B. Roy, T. Agarwal, S. Giri, K. Pramanik, K. Pal, S. S. Ray, T. K. Maiti, I. Banerjee. Cobalt doped proangiogenic hydroxyapatite for bone tissue engineering application. Mater. Sci. Eng.: C, 58, (2016), 648–658.

DOI: 10.1016/j.msec.2015.08.052

Google Scholar

[25] S. Balakrishnan, V. P. Padmanabhan, R. Kulandaivelu, T. S. Sankara Narayanan Nellaiappan, S. Sagadevan, S. Paiman, F. Mohammad, H. A. Al-Lohedan, P. K. Obulapuram, W. C. Oh. Influence of iron doping towards the physicochemical and biological characteristics of hydroxyapatite. Ceramics Intern. 47(4), (2021), 5061–5070

DOI: 10.1016/j.ceramint.2020.10.084

Google Scholar

[26] S. Jose, M. Senthilkumar, K. Elayaraja, M. Haris, A. George, A. D. Raj, S. J. Sundaram, A. K. H. Bashir, M. Maaza, K. Kaviyarasu. Preparation and characterization of Fe-doped n-hydroxyapatite for biomedical application. Surfaces and Interfaces. 25, (2021), 101185.

DOI: 10.1016/j.surfin.2021.101185

Google Scholar

[27] U. Erdem, B. M. Bozer, M. B. Turkoz, A. U. Metin, G. Yıldırım, M. Turk, S. Nezir. Spectral analysis and biological activity assessment of silver doped hydroxyapatite. J Asian Ceramic Societies. 9(4), (2021), 1524–1545.

DOI: 10.1080/21870764.2021.1989749

Google Scholar

[28] V. P. Padmanabhan, R. Kulandaivelu, S. N. T. S. Nellaiappan, M. Lakshmipathy, S. Sagadevan, M. R. Johan. Facile fabrication of phase transformed cerium (IV) doped hydroxyapatite for biomedical applications – A health care approach. Ceramics Intern. 46(2), (2020), 2510–2522.

DOI: 10.1016/j.ceramint.2019.09.245

Google Scholar

[29] A. Nisar, S. Iqbal, M. Atiq Ur Rehman, A. Mahmood, M. Younas, S. Z. Hussain, Q. Tayyaba, A. Shah. Study of physico-mechanical and electrical properties of cerium doped hydroxyapatite for biomedical applications. Mater. Chem. and Physics. 299, (2023), 127511.

DOI: 10.1016/j.matchemphys.2023.127511

Google Scholar

[30] A. Jenifer, K. Senthilarasan, S. Arumugam, P. Sivaprakash, S. Sagadevan, P. Sakthivel. Investigation on antibacterial and hemolytic properties of magnesium-doped hydroxyapatite nanocomposite. Chem. Physics Letters. 771, (2021), 138539.

DOI: 10.1016/j.cplett.2021.138539

Google Scholar

[31] D. Bhatnagar, S. Gautam, L. Sonowal, S. S. Bhinder, S. Ghosh, F. Pati. Enhancing Bone Implants: Magnesium-Doped Hydroxyapatite for Stronger, Bioactive, and Biocompatible Applications. ACS Applied Bio Mater. 7(4), (2024), 2272–2282.

DOI: 10.1021/acsabm.3c01269

Google Scholar

[32] S. M. Tuntun, M. S. Hossain, M. N. Uddin, M. A. A. Shaikh, N. M. Bahadur, S. Ahmed. Crystallographic characterization and application of copper doped hydroxyapatite as a biomaterial. New J Chem. 47(6), (2023), 2874–2885.

DOI: 10.1039/d2nj04130h

Google Scholar

[33] A. Nenen, M. Maureira, M. Neira, S. L. Orellana, C. Covarrubias, I. Moreno-Villoslada. Synthesis of antibacterial silver and zinc doped nano-hydroxyapatite with potential in bone tissue engineering applications. Ceramics Intern. 48(23), (2022), 34750–34759.

DOI: 10.1016/j.ceramint.2022.08.064

Google Scholar

[34] V. Uskoković, N. Ignjatović, S. Škapin, D. P. Uskoković. Germanium-doped hydroxyapatite: Synthesis and characterization of a new substituted apatite. Ceramics Intern. 48(19, Part A), (2022), 27693–27702.

DOI: 10.1016/j.ceramint.2022.06.068

Google Scholar

[35] E. A. Ofudje, A. I. Adeogun, M. A. Idowu, S. O. Kareem. Synthesis and characterization of Zn-Doped hydroxyapatite: Scaffold application, antibacterial and bioactivity studies. Heliyon, 5(5), (2019), e01716.

DOI: 10.1016/j.heliyon.2019.e01716

Google Scholar

[36] D. Predoi, S. L. Iconaru, M. V. Predoi, G. E. Stan, N. Buton. Synthesis, Characterization, and Antimicrobial Activity of Magnesium-Doped Hydroxyapatite Suspensions. Nanomater. 9(9), (2019), 1295.

DOI: 10.3390/nano9091295

Google Scholar

[37] G. Karunakaran, E. B. Cho, G. S. Kumar, E. Kolesnikov, G. Janarthanan, M. M. Pillai, S. Rajendran, S. Boobalan, K. G. Sudha, M. P. Rajeshkumar. Mesoporous Mg-doped hydroxyapatite nanorods prepared from bio-waste blue mussel shells for implant applications. Ceramics Intern. 46(18, Part A), (2020), 28514–28527.

DOI: 10.1016/j.ceramint.2020.08.009

Google Scholar

[38] T. Nagyné-Kovács, L. Studnicka, A. Kincses, G. Spengler, M. Molnár, M. Tolner, I. E. Lukács, I. M. Szilágyi, G. Pokol. Synthesis and characterization of Sr and Mg-doped hydroxyapatite by a simple precipitation method. Ceramics Intern. 44(18), (2018), 22976–22982.

DOI: 10.1016/j.ceramint.2018.09.096

Google Scholar

[39] H. Alioui, O. Bouras, J. C. Bollinger. Toward an efficient antibacterial agent: Zn- and Mg-doped hydroxyapatite nanopowders. J Environmental Sci. Health, Part A. 54(4), (2019), 315–327.

DOI: 10.1080/10934529.2018.1550292

Google Scholar

[40] P. M. Sivakumar, A. A. Yetisgin, S. B. Sahin, E. Demir, S. Cetinel. Enhanced properties of nickel–silver codoped hydroxyapatite for bone tissue engineering: Synthesis, characterization, and biocompatibility evaluation. Environmental Res. 238, (2023), 117131.

DOI: 10.1016/j.envres.2023.117131

Google Scholar

[41] M. Megha, A. Joy, G. Unnikrishnan, M. Haris, J. Thomas, A. Deepti, P. S. B. Chakrapani, E. Kolanthai, S. Muthuswamy. Structural and biological properties of novel Vanadium and Strontium co-doped HAp for tissue engineering applications. Ceramics Intern. 49(18), (2023), 30156–30169.

DOI: 10.1016/j.ceramint.2023.06.272

Google Scholar

[42] A. Kurzyk, A. Szwed-Georgiou, J. Pagacz, A. Antosik, P. Tymowicz-Grzyb, A. Gerle, P. Szterner, M. Włodarczyk, P. Płociński, M. M. Urbaniak, K. Rudnicka, M. Biernat. Calcination and ion substitution improve physicochemical and biological properties of nanohydroxyapatite for bone tissue engineering applications. Scientific Reports. 13(1), (2023), 15384.

DOI: 10.1038/s41598-023-42271-2

Google Scholar

[43] S. F. Mansour, S. L. El-Dek, S. V. Dorozhkin, M. K. Ahmed. Physico-mechanical properties of Mg and Ag-doped hydroxyapatite/chitosan biocomposites. New J Chem. 41(22), (2017), 13773–13783.

DOI: 10.1039/c7nj01777d

Google Scholar

[44] D. Predoi, S. C. Ciobanu, S. L. Iconaru, M. V. Predoi. Influence of the biological medium on the properties of magnesium doped hydroxyapatite composite coatings. Coatings, 13(2), (2023), 409.

DOI: 10.3390/coatings13020409

Google Scholar

[45] A. I. Raafat, H. Kamal, H. M. Sharada, S. A. Abd elhalim, R. D. Mohamed. Radiation Synthesis of Magnesium Doped Nano Hydroxyapatite/(Acacia-Gelatin) Scaffold for Bone Tissue Regeneration: In Vitro Drug Release Study. J Inorganic and Organometallic Polymers and Mater. 30(8), (2020), 2890–2906.

DOI: 10.1007/s10904-019-01418-3

Google Scholar

[46] J. Anita Lett, S. Sagadevan, I. Fatimah, M. E. Hoque, Y. Lokanathan, E. Léonard, S. F. Alshahateet, R. Schirhagl, W. C. Oh. Recent advances in natural polymer-based hydroxyapatite scaffolds: Properties and applications. European Polymer Journal, 148, (2021), 110360.

DOI: 10.1016/j.eurpolymj.2021.110360

Google Scholar

[47] H. Gergeroglu, M. F. Ebeoglugil, S. Bayrak, D. Aksu, Y. Taghipour Azar. Systematic investigation and controlled synthesis of Ag/Ti co-doped hydroxyapatite for bone tissue engineering. Materials Today Chemistry, 39, (2024), 102175.

DOI: 10.1016/j.mtchem.2024.102175

Google Scholar

[48] U. Ifeanyichukwu. Electrochemical Studies and Antimicrobial Properties of Synthesized Green Mediated Metal Oxide Nanoparticles, 2020.

Google Scholar

[49] S. Kızıltas Demir, N. Tugrul. Zinc and cadmium adsorption from wastewater using hydroxyapatite synthesized from flue gas desulfurization waste, Water Sci. Technol., 84(5), (2021), 1280–1292.

DOI: 10.2166/wst.2021.301

Google Scholar

[50] B. O. Asimeng, J. R. Fianko, E. E. Kaufmann, E. K. Tiburu, C. F. Hayford, P. A. Anani, O. K. Dzikunu. Preparation and characterization of hydroxyapatite from A chatina achatina snail shells: effect of carbonate substitution and trace elements on defluoridation of water, J Asian Ceram. Soc. 6(3), (2018), 205–212.

DOI: 10.1080/21870764.2018.1488570

Google Scholar

[51] H. D. Jirimali, B. C. Chaudhari, J. C. Khanderay, S. A. Joshi, V. Singh, A. M. Patil, V. V. Gite. Waste Eggshell-Derived Calcium Oxide and Nanohydroxyapatite Biomaterials for the Preparation of LLDPE Polymer Nanocomposite and Their Thermomechanical Study, Polym.-Plast. Technol. Eng. 57(8), (2018), 804–811.

DOI: 10.1080/03602559.2017.1354221

Google Scholar

[52] W. J. Chong, S. Shen, Y. Li, A. Trinchi, D. Pejak Simunec, I. Kyratzis, A. Sola, C. Wen. Biodegradable PLA-ZnO nanocomposite biomaterials with antibacterial properties, tissue engineering viability, and enhanced biocompatibility, Smart Mater. Manuf. 1, (2023), 100004.

DOI: 10.1016/j.smmf.2022.100004

Google Scholar

[53] V. G. DileepKumar, M. S. Sridhar, P. Aramwit, V. K. Krut'ko, O. N. Musskaya, I. E. Glazov, N. Reddy. A review on the synthesis and properties of hydroxyapatite for biomedical applications, J Biomater. Sci. Polym. Ed. 33(2), (2022), 229–261.

DOI: 10.1080/09205063.2021.1980985

Google Scholar

[54] F. Dogrul, P. Ożóg, M. Michálek, H. Elsayed, D. Galusek, L. Liverani, A. R. Boccaccini, E. Bernardo. Polymer-Derived Biosilicate®-like Glass-Ceramics: Engineering of Formulations and Additive Manufacturing of Three-Dimensional Scaffolds, Materials, 14(18), (2021), 5170.

DOI: 10.3390/ma14185170

Google Scholar

[55] A. Yönetken, G. Pesmen, A. Erol. Production And Characterization Of Ti-10Cr-3,33Co-3,33Egg Shelter Composite Materials Using By Powder Metallurgy, Uluslar. Muhendislik Arastirma Ve Gelistirme Derg. (2020), 158–165.

DOI: 10.29137/umagd.474031

Google Scholar

[56] A. O. Ogunsanya, E. B. Iorohol, D. Arinze, O. Ogundoyin. Evaluation of MgO-ZnO-Crab Shell Biofillers as Reinforcement for Biodegradable Polylactic Acid (PLA) Composite, Niger. J. Technol. Dev. 21(2), (2024), 10–21.

DOI: 10.4314/njtd.v21i2.2127

Google Scholar

[57] A. Aminatun, T. Suciati, Y. W. Sari, M. Sari, K. A. Alamsyah, W. Purnamasari, Y. Yusuf. Biopolymer-based polycaprolactone-hydroxyapatite scaffolds for bone tissue engineering, Int. J Polymeric Mater. Polymeric Biomater. 72(5), (2023), 376–385.

DOI: 10.1080/00914037.2021.2018315

Google Scholar

[58] O. Kaygili, S. Keser. Sol–gel synthesis and characterization of Sr/Mg, Mg/Zn and Sr/Zn co-doped hydroxyapatites, Mater. Lett. 141, (2015), 161–164.

DOI: 10.1016/j.matlet.2014.11.078

Google Scholar

[59] A. Mahanty, D. Shikha. Calcium substituted with magnesium, silver and zinc in hydroxyapatite: a review, Int. J Mater. Res., 112(11), (2021), 922–930.

DOI: 10.1515/ijmr-2020-8181

Google Scholar

[60] F. Ali, A. Al Rashid, S. N. Kalva, M. Koç. Mg-Doped PLA Composite as a Potential Material for Tissue Engineering—Synthesis, Characterization, and Additive Manufacturing. Materials, 16(19), (2023), 6506.

DOI: 10.3390/ma16196506

Google Scholar

[61] A. H. Diputra, I. K. H. Dinatha, N. Cahyati, J. F. Fatriansyah, M. Taufik, Hartatiek, Y. Yusuf. Electrospun polyvinyl alcohol nanofiber scaffolds incorporated strontium-substituted hydroxyapatite from sand lobster shells: Synthesis, characterization, and in vitro biological properties. Biomedical Materials, 19(6), (2024), 065021.

DOI: 10.1088/1748-605x/ad7e92

Google Scholar

[62] A. Ressler, L. Bauer, T. Prebeg, M. Ledinski, I. Hussainova, I. Urlić, M. Ivanković, H. Ivanković. PCL/Si-Doped Multi-Phase Calcium Phosphate Scaffolds Derived from Cuttlefish Bone, Materials, 15(9), (2022), 3348.

DOI: 10.3390/ma15093348

Google Scholar

[63] K. A. Pridanti, F. Cahyaraeni, E. Harijanto, D. Rianti, W. Kristanto, H. Damayanti, T. S. Putri, A. Dinaryanti, D. Karsari, A. Yuliati. Characteristics and cytotoxicity of hydroxyapatite from Padalarang–Cirebon limestone as bone grafting candidate, Biochem. Cell. Arch. 20(2), (2020), 4727–4731.

Google Scholar

[64] H. Khandelwal, S. Prakash. Synthesis and Characterization of Hydroxyapatite Powder by Eggshell, J Miner. Mater. Charact. Eng. 04(02), (2016), 119–126.

DOI: 10.4236/jmmce.2016.42011

Google Scholar

[65] N. Iqbal, T. M. Braxton, A. Anastasiou, E. M. Raif, C. K. Y. Chung, S. Kumar, P. V. Giannoudis, A. Jha. Dicalcium Phosphate Dihydrate Mineral Loaded Freeze-Dried Scaffolds for Potential Synthetic Bone Applications, Materials, 15(18), (2022), 6245.

DOI: 10.3390/ma15186245

Google Scholar

[66] S. Yasmeen, M. K. Kabiraz, B. Saha, M. Qadir, M. Gafur, S. Masum. Chromium (VI) ions removal from tannery effluent using chitosan-microcrystalline cellulose composite as adsorbent, Int Res J Pure Appl Chem, 10(4), (2016), 1–14.

DOI: 10.9734/irjpac/2016/23315

Google Scholar

[67] S. Marković, L. Veselinović, M. J. Lukić, L. Karanović, I. Bračko, N. Ignjatović, D. Uskoković. Synthetical bone-like and biological hydroxyapatites: a comparative study of crystal structure and morphology, Biomed. Mater. 6(4), (2011), 045005.

DOI: 10.1088/1748-6041/6/4/045005

Google Scholar

[68] G. Balakrishnan, R. Velavan, K. M. Batoo, E. H. Raslan. Microstructure, optical and photocatalytic properties of MgO nanoparticles, Results Phys. 16, (2020), 103013.

DOI: 10.1016/j.rinp.2020.103013

Google Scholar

[69] S.C. Cifuentes, R. Gavilán, M. Lieblich, R. Benavente, J. L. González-Carrasco. In vitro degradation of biodegradable polylactic acid/magnesium composites: Relevance of Mg particle shape. Acta Biomaterialia. 32, (2016), 348–357.

DOI: 10.1016/j.actbio.2015.12.037

Google Scholar

[70] M. Asadollahi, E. Gerashi, M. Zohrevand, M. Zarei, S. S. Sayedain, R. Alizadeh, S. Labbaf, M. Atari, M. Improving mechanical properties and biocompatibility of 3D printed PLA by the addition of PEG and titanium particles, using a novel incorporation method. Bioprinting. 27, (2022), e00228.

DOI: 10.1016/j.bprint.2022.e00228

Google Scholar