[1]
B. A. Allo, D. O. Costa, S. J. Dixon, K. Mequanint, A. S. Rizkalla. Bioactive and biodegradable nanocomposites and hybrid biomaterials for bone regeneration, J Funct. Biomater. 3(2), (2012), 432–463, 2012.
DOI: 10.3390/jfb3020432
Google Scholar
[2]
M. Abbas, M. S. Alqahtani, R. Alhifzi. Recent Developments in Polymer Nanocomposites for Bone Regeneration, Int J Mol. Sci. 24(4), (2023), 3312.
DOI: 10.3390/ijms24043312
Google Scholar
[3]
S. Sagadevan, R. Schirhagl, M. Z. Rahman, M. F. Bin Ismail, J. A. Lett, I. Fatimah, N. H. Mohd Kaus, W. C. Oh. Recent advancements in polymer matrix nanocomposites for bone tissue engineering applications, J Drug Deliv. Sci. Technol. 82, (2023), 104313.
DOI: 10.1016/j.jddst.2023.104313
Google Scholar
[4]
I. Antoniac, M. Miculescu, V. Mănescu, A. Stere, P. H. Quan, G. Păltânea, A. Robu, K. Earar. Magnesium-based alloys used in orthopedic surgery, Materials. 15(3), (2022), 1148.
DOI: 10.3390/ma15031148
Google Scholar
[5]
B. Jahani, K. Meesterb, X. Wanga, A. Brooksc. Biodegradable Magnesium-Based alloys for bone repair applications: Prospects and challenges, Biomed Sci Instrum. 56(2), (2020), 292–304.
Google Scholar
[6]
S. Sakka, J. Bouaziz, F. Ben. Mechanical Properties of Biomaterials Based on Calcium Phosphates and Bioinert Oxides for Applications in Biomedicine, in: Advances in Biomaterials Science and Biomedical Applications, R. Pignatello, Ed., InTech, 2013.
DOI: 10.5772/53088
Google Scholar
[7]
P. Kobbe, M. Laubach, D. W. Hutmacher, H. Alabdulrahman, R. M. Sellei, F. Hildebrand. Convergence of scaffold-guided bone regeneration and RIA bone grafting for the treatment of a critical-sized bone defect of the femoral shaft, Eur. J Med. Res. 25(1), (2020), 70.
DOI: 10.21203/rs.3.rs-115334/v1
Google Scholar
[8]
A. Magiera, J. Markowski, E. Menaszek, J. Pilch, S. Blazewicz. PLA-Based Hybrid and Composite Electrospun Fibrous Scaffolds as Potential Materials for Tissue Engineering, J Nanomater. 2017, (2017), 1–11.
DOI: 10.1155/2017/9246802
Google Scholar
[9]
R. Song, M. Murphy, C. Li, K. Ting, C. Soo, Z. Zheng. Current development of biodegradable polymeric materials for biomedical applications, Drug Des. Devel. Ther. 12, (2018), 3117–3145.
DOI: 10.2147/dddt.s165440
Google Scholar
[10]
F. Fattahi, A. Khoddami, O. Avinc. Poly (lactic acid)(PLA) nanofibers for bone tissue engineering, J. Text. Polym. 7(2), (2019), 47–64.
Google Scholar
[11]
L. Li, J. M. Stiadle, H. K. Lau, A. B. Zerdoum, X. Jia, S. L. Thibeault, K. L. Kiick. Tissue engineering-based therapeutic strategies for vocal fold repair and regeneration, Biomaterials, 108, (2016), 91–110.
DOI: 10.1016/j.biomaterials.2016.08.054
Google Scholar
[12]
T. Monia. β-TCP/DCPD-PHBV (40%/60%): biomaterial made from bioceramic and biopolymer for bone regeneration; investigation of intrinsic properties, J. Appl. Biomater. Funct. Mater. 20, (2022), 22808000221088950.
DOI: 10.1177/22808000221088950
Google Scholar
[13]
M. Trimeche. Biomaterials for bone regeneration: an overview, Biomater Tissue Technol. 1, (2017), 1–5.
Google Scholar
[14]
H. K. Lau. Resilin-like polypetide-based microstructured hydrogels via aqueous-based liquid-liquid phase separation for tissue engineering applications, University of Delaware, 2018.
Google Scholar
[15]
E. Hartley, H. Moon, A. Neves. Biodegradable Synthetic Polymers for Tissue Engineering: A Mini-review, Reinvention Int. J. Undergrad. Res. 15(1), (2022)
DOI: 10.31273/reinvention.v15i1.801
Google Scholar
[16]
E. E. Tănase, M. Râpă, O. Popa. Biopolymers based on renewable resources-a review, Sci. Bull. Ser. F Biotechnol. 2014, (2014), 188–195.
Google Scholar
[17]
C. Wright, A. Banerjee, X. Yan, W. K. Storms-Miller, C. Pugh. Synthesis of Functionalized Poly(lactic acid) Using 2-Bromo-3-hydroxypropionic Acid, Macromolecules, 49(6), (2016), 2028–2038.
DOI: 10.1021/acs.macromol.6b00331
Google Scholar
[18]
J. Radwan-Pragłowska, Ł. Janus, M. Piątkowski, D. Bogdał, D. Matysek. 3D hierarchical, nanostructured chitosan/PLA/HA scaffolds doped with TiO2/Au/Pt NPs with tunable properties for guided bone tissue engineering, Polymers, 12(4), (2020), 792.
DOI: 10.3390/polym12040792
Google Scholar
[19]
S. Saravanan, S. Vimalraj, G. Lakshmanan, A. Jindal, D. Sundaramurthi, J. Bhattacharya. Chitosan-based biocomposite scaffolds and hydrogels for bone tissue regeneration, Mar.-Deriv. Biomater. Tissue Eng. Appl. (2019), 413–442.
DOI: 10.1007/978-981-13-8855-2_18
Google Scholar
[20]
S. Mondal, B. Mondal, A. Dey, S. S. Mukhopadhyay. Studies on processing and characterization of hydroxyapatite biomaterials from different bio wastes, J Min. Mater Charact Eng. 11(1), (2012), 55–67.
DOI: 10.4236/jmmce.2012.111005
Google Scholar
[21]
S. Hussain, Z. A. Shah, K. Sabiruddin, A. K. Keshri. Characterization and tribological behaviour of Indian clam seashell-derived hydroxyapatite coating applied on titanium alloy by plasma spray technique, J. Mech. Behav. Biomed. Mater. 137, (2023), 105550.
DOI: 10.1016/j.jmbbm.2022.105550
Google Scholar
[22]
S. Hussain, K. Sabiruddin. Synthesis of eggshell based hydroxyapatite using hydrothermal method, IOP Conf. Ser. Mater. Sci. Eng. 1189(1), (2021), 012024.
DOI: 10.1088/1757-899x/1189/1/012024
Google Scholar
[23]
M. Taherimehr, H. YousefniaPasha, R. Tabatabaeekoloor, E. Pesaranhajiabbas. Trends and challenges of biopolymer‐based nanocomposites in food packaging, Compr. Rev. Food Sci. Food Saf. 20(6), (2021), 5321–5344.
DOI: 10.1111/1541-4337.12832
Google Scholar
[24]
S. Kulanthaivel, B. Roy, T. Agarwal, S. Giri, K. Pramanik, K. Pal, S. S. Ray, T. K. Maiti, I. Banerjee. Cobalt doped proangiogenic hydroxyapatite for bone tissue engineering application. Mater. Sci. Eng.: C, 58, (2016), 648–658.
DOI: 10.1016/j.msec.2015.08.052
Google Scholar
[25]
S. Balakrishnan, V. P. Padmanabhan, R. Kulandaivelu, T. S. Sankara Narayanan Nellaiappan, S. Sagadevan, S. Paiman, F. Mohammad, H. A. Al-Lohedan, P. K. Obulapuram, W. C. Oh. Influence of iron doping towards the physicochemical and biological characteristics of hydroxyapatite. Ceramics Intern. 47(4), (2021), 5061–5070
DOI: 10.1016/j.ceramint.2020.10.084
Google Scholar
[26]
S. Jose, M. Senthilkumar, K. Elayaraja, M. Haris, A. George, A. D. Raj, S. J. Sundaram, A. K. H. Bashir, M. Maaza, K. Kaviyarasu. Preparation and characterization of Fe-doped n-hydroxyapatite for biomedical application. Surfaces and Interfaces. 25, (2021), 101185.
DOI: 10.1016/j.surfin.2021.101185
Google Scholar
[27]
U. Erdem, B. M. Bozer, M. B. Turkoz, A. U. Metin, G. Yıldırım, M. Turk, S. Nezir. Spectral analysis and biological activity assessment of silver doped hydroxyapatite. J Asian Ceramic Societies. 9(4), (2021), 1524–1545.
DOI: 10.1080/21870764.2021.1989749
Google Scholar
[28]
V. P. Padmanabhan, R. Kulandaivelu, S. N. T. S. Nellaiappan, M. Lakshmipathy, S. Sagadevan, M. R. Johan. Facile fabrication of phase transformed cerium (IV) doped hydroxyapatite for biomedical applications – A health care approach. Ceramics Intern. 46(2), (2020), 2510–2522.
DOI: 10.1016/j.ceramint.2019.09.245
Google Scholar
[29]
A. Nisar, S. Iqbal, M. Atiq Ur Rehman, A. Mahmood, M. Younas, S. Z. Hussain, Q. Tayyaba, A. Shah. Study of physico-mechanical and electrical properties of cerium doped hydroxyapatite for biomedical applications. Mater. Chem. and Physics. 299, (2023), 127511.
DOI: 10.1016/j.matchemphys.2023.127511
Google Scholar
[30]
A. Jenifer, K. Senthilarasan, S. Arumugam, P. Sivaprakash, S. Sagadevan, P. Sakthivel. Investigation on antibacterial and hemolytic properties of magnesium-doped hydroxyapatite nanocomposite. Chem. Physics Letters. 771, (2021), 138539.
DOI: 10.1016/j.cplett.2021.138539
Google Scholar
[31]
D. Bhatnagar, S. Gautam, L. Sonowal, S. S. Bhinder, S. Ghosh, F. Pati. Enhancing Bone Implants: Magnesium-Doped Hydroxyapatite for Stronger, Bioactive, and Biocompatible Applications. ACS Applied Bio Mater. 7(4), (2024), 2272–2282.
DOI: 10.1021/acsabm.3c01269
Google Scholar
[32]
S. M. Tuntun, M. S. Hossain, M. N. Uddin, M. A. A. Shaikh, N. M. Bahadur, S. Ahmed. Crystallographic characterization and application of copper doped hydroxyapatite as a biomaterial. New J Chem. 47(6), (2023), 2874–2885.
DOI: 10.1039/d2nj04130h
Google Scholar
[33]
A. Nenen, M. Maureira, M. Neira, S. L. Orellana, C. Covarrubias, I. Moreno-Villoslada. Synthesis of antibacterial silver and zinc doped nano-hydroxyapatite with potential in bone tissue engineering applications. Ceramics Intern. 48(23), (2022), 34750–34759.
DOI: 10.1016/j.ceramint.2022.08.064
Google Scholar
[34]
V. Uskoković, N. Ignjatović, S. Škapin, D. P. Uskoković. Germanium-doped hydroxyapatite: Synthesis and characterization of a new substituted apatite. Ceramics Intern. 48(19, Part A), (2022), 27693–27702.
DOI: 10.1016/j.ceramint.2022.06.068
Google Scholar
[35]
E. A. Ofudje, A. I. Adeogun, M. A. Idowu, S. O. Kareem. Synthesis and characterization of Zn-Doped hydroxyapatite: Scaffold application, antibacterial and bioactivity studies. Heliyon, 5(5), (2019), e01716.
DOI: 10.1016/j.heliyon.2019.e01716
Google Scholar
[36]
D. Predoi, S. L. Iconaru, M. V. Predoi, G. E. Stan, N. Buton. Synthesis, Characterization, and Antimicrobial Activity of Magnesium-Doped Hydroxyapatite Suspensions. Nanomater. 9(9), (2019), 1295.
DOI: 10.3390/nano9091295
Google Scholar
[37]
G. Karunakaran, E. B. Cho, G. S. Kumar, E. Kolesnikov, G. Janarthanan, M. M. Pillai, S. Rajendran, S. Boobalan, K. G. Sudha, M. P. Rajeshkumar. Mesoporous Mg-doped hydroxyapatite nanorods prepared from bio-waste blue mussel shells for implant applications. Ceramics Intern. 46(18, Part A), (2020), 28514–28527.
DOI: 10.1016/j.ceramint.2020.08.009
Google Scholar
[38]
T. Nagyné-Kovács, L. Studnicka, A. Kincses, G. Spengler, M. Molnár, M. Tolner, I. E. Lukács, I. M. Szilágyi, G. Pokol. Synthesis and characterization of Sr and Mg-doped hydroxyapatite by a simple precipitation method. Ceramics Intern. 44(18), (2018), 22976–22982.
DOI: 10.1016/j.ceramint.2018.09.096
Google Scholar
[39]
H. Alioui, O. Bouras, J. C. Bollinger. Toward an efficient antibacterial agent: Zn- and Mg-doped hydroxyapatite nanopowders. J Environmental Sci. Health, Part A. 54(4), (2019), 315–327.
DOI: 10.1080/10934529.2018.1550292
Google Scholar
[40]
P. M. Sivakumar, A. A. Yetisgin, S. B. Sahin, E. Demir, S. Cetinel. Enhanced properties of nickel–silver codoped hydroxyapatite for bone tissue engineering: Synthesis, characterization, and biocompatibility evaluation. Environmental Res. 238, (2023), 117131.
DOI: 10.1016/j.envres.2023.117131
Google Scholar
[41]
M. Megha, A. Joy, G. Unnikrishnan, M. Haris, J. Thomas, A. Deepti, P. S. B. Chakrapani, E. Kolanthai, S. Muthuswamy. Structural and biological properties of novel Vanadium and Strontium co-doped HAp for tissue engineering applications. Ceramics Intern. 49(18), (2023), 30156–30169.
DOI: 10.1016/j.ceramint.2023.06.272
Google Scholar
[42]
A. Kurzyk, A. Szwed-Georgiou, J. Pagacz, A. Antosik, P. Tymowicz-Grzyb, A. Gerle, P. Szterner, M. Włodarczyk, P. Płociński, M. M. Urbaniak, K. Rudnicka, M. Biernat. Calcination and ion substitution improve physicochemical and biological properties of nanohydroxyapatite for bone tissue engineering applications. Scientific Reports. 13(1), (2023), 15384.
DOI: 10.1038/s41598-023-42271-2
Google Scholar
[43]
S. F. Mansour, S. L. El-Dek, S. V. Dorozhkin, M. K. Ahmed. Physico-mechanical properties of Mg and Ag-doped hydroxyapatite/chitosan biocomposites. New J Chem. 41(22), (2017), 13773–13783.
DOI: 10.1039/c7nj01777d
Google Scholar
[44]
D. Predoi, S. C. Ciobanu, S. L. Iconaru, M. V. Predoi. Influence of the biological medium on the properties of magnesium doped hydroxyapatite composite coatings. Coatings, 13(2), (2023), 409.
DOI: 10.3390/coatings13020409
Google Scholar
[45]
A. I. Raafat, H. Kamal, H. M. Sharada, S. A. Abd elhalim, R. D. Mohamed. Radiation Synthesis of Magnesium Doped Nano Hydroxyapatite/(Acacia-Gelatin) Scaffold for Bone Tissue Regeneration: In Vitro Drug Release Study. J Inorganic and Organometallic Polymers and Mater. 30(8), (2020), 2890–2906.
DOI: 10.1007/s10904-019-01418-3
Google Scholar
[46]
J. Anita Lett, S. Sagadevan, I. Fatimah, M. E. Hoque, Y. Lokanathan, E. Léonard, S. F. Alshahateet, R. Schirhagl, W. C. Oh. Recent advances in natural polymer-based hydroxyapatite scaffolds: Properties and applications. European Polymer Journal, 148, (2021), 110360.
DOI: 10.1016/j.eurpolymj.2021.110360
Google Scholar
[47]
H. Gergeroglu, M. F. Ebeoglugil, S. Bayrak, D. Aksu, Y. Taghipour Azar. Systematic investigation and controlled synthesis of Ag/Ti co-doped hydroxyapatite for bone tissue engineering. Materials Today Chemistry, 39, (2024), 102175.
DOI: 10.1016/j.mtchem.2024.102175
Google Scholar
[48]
U. Ifeanyichukwu. Electrochemical Studies and Antimicrobial Properties of Synthesized Green Mediated Metal Oxide Nanoparticles, 2020.
Google Scholar
[49]
S. Kızıltas Demir, N. Tugrul. Zinc and cadmium adsorption from wastewater using hydroxyapatite synthesized from flue gas desulfurization waste, Water Sci. Technol., 84(5), (2021), 1280–1292.
DOI: 10.2166/wst.2021.301
Google Scholar
[50]
B. O. Asimeng, J. R. Fianko, E. E. Kaufmann, E. K. Tiburu, C. F. Hayford, P. A. Anani, O. K. Dzikunu. Preparation and characterization of hydroxyapatite from A chatina achatina snail shells: effect of carbonate substitution and trace elements on defluoridation of water, J Asian Ceram. Soc. 6(3), (2018), 205–212.
DOI: 10.1080/21870764.2018.1488570
Google Scholar
[51]
H. D. Jirimali, B. C. Chaudhari, J. C. Khanderay, S. A. Joshi, V. Singh, A. M. Patil, V. V. Gite. Waste Eggshell-Derived Calcium Oxide and Nanohydroxyapatite Biomaterials for the Preparation of LLDPE Polymer Nanocomposite and Their Thermomechanical Study, Polym.-Plast. Technol. Eng. 57(8), (2018), 804–811.
DOI: 10.1080/03602559.2017.1354221
Google Scholar
[52]
W. J. Chong, S. Shen, Y. Li, A. Trinchi, D. Pejak Simunec, I. Kyratzis, A. Sola, C. Wen. Biodegradable PLA-ZnO nanocomposite biomaterials with antibacterial properties, tissue engineering viability, and enhanced biocompatibility, Smart Mater. Manuf. 1, (2023), 100004.
DOI: 10.1016/j.smmf.2022.100004
Google Scholar
[53]
V. G. DileepKumar, M. S. Sridhar, P. Aramwit, V. K. Krut'ko, O. N. Musskaya, I. E. Glazov, N. Reddy. A review on the synthesis and properties of hydroxyapatite for biomedical applications, J Biomater. Sci. Polym. Ed. 33(2), (2022), 229–261.
DOI: 10.1080/09205063.2021.1980985
Google Scholar
[54]
F. Dogrul, P. Ożóg, M. Michálek, H. Elsayed, D. Galusek, L. Liverani, A. R. Boccaccini, E. Bernardo. Polymer-Derived Biosilicate®-like Glass-Ceramics: Engineering of Formulations and Additive Manufacturing of Three-Dimensional Scaffolds, Materials, 14(18), (2021), 5170.
DOI: 10.3390/ma14185170
Google Scholar
[55]
A. Yönetken, G. Pesmen, A. Erol. Production And Characterization Of Ti-10Cr-3,33Co-3,33Egg Shelter Composite Materials Using By Powder Metallurgy, Uluslar. Muhendislik Arastirma Ve Gelistirme Derg. (2020), 158–165.
DOI: 10.29137/umagd.474031
Google Scholar
[56]
A. O. Ogunsanya, E. B. Iorohol, D. Arinze, O. Ogundoyin. Evaluation of MgO-ZnO-Crab Shell Biofillers as Reinforcement for Biodegradable Polylactic Acid (PLA) Composite, Niger. J. Technol. Dev. 21(2), (2024), 10–21.
DOI: 10.4314/njtd.v21i2.2127
Google Scholar
[57]
A. Aminatun, T. Suciati, Y. W. Sari, M. Sari, K. A. Alamsyah, W. Purnamasari, Y. Yusuf. Biopolymer-based polycaprolactone-hydroxyapatite scaffolds for bone tissue engineering, Int. J Polymeric Mater. Polymeric Biomater. 72(5), (2023), 376–385.
DOI: 10.1080/00914037.2021.2018315
Google Scholar
[58]
O. Kaygili, S. Keser. Sol–gel synthesis and characterization of Sr/Mg, Mg/Zn and Sr/Zn co-doped hydroxyapatites, Mater. Lett. 141, (2015), 161–164.
DOI: 10.1016/j.matlet.2014.11.078
Google Scholar
[59]
A. Mahanty, D. Shikha. Calcium substituted with magnesium, silver and zinc in hydroxyapatite: a review, Int. J Mater. Res., 112(11), (2021), 922–930.
DOI: 10.1515/ijmr-2020-8181
Google Scholar
[60]
F. Ali, A. Al Rashid, S. N. Kalva, M. Koç. Mg-Doped PLA Composite as a Potential Material for Tissue Engineering—Synthesis, Characterization, and Additive Manufacturing. Materials, 16(19), (2023), 6506.
DOI: 10.3390/ma16196506
Google Scholar
[61]
A. H. Diputra, I. K. H. Dinatha, N. Cahyati, J. F. Fatriansyah, M. Taufik, Hartatiek, Y. Yusuf. Electrospun polyvinyl alcohol nanofiber scaffolds incorporated strontium-substituted hydroxyapatite from sand lobster shells: Synthesis, characterization, and in vitro biological properties. Biomedical Materials, 19(6), (2024), 065021.
DOI: 10.1088/1748-605x/ad7e92
Google Scholar
[62]
A. Ressler, L. Bauer, T. Prebeg, M. Ledinski, I. Hussainova, I. Urlić, M. Ivanković, H. Ivanković. PCL/Si-Doped Multi-Phase Calcium Phosphate Scaffolds Derived from Cuttlefish Bone, Materials, 15(9), (2022), 3348.
DOI: 10.3390/ma15093348
Google Scholar
[63]
K. A. Pridanti, F. Cahyaraeni, E. Harijanto, D. Rianti, W. Kristanto, H. Damayanti, T. S. Putri, A. Dinaryanti, D. Karsari, A. Yuliati. Characteristics and cytotoxicity of hydroxyapatite from Padalarang–Cirebon limestone as bone grafting candidate, Biochem. Cell. Arch. 20(2), (2020), 4727–4731.
Google Scholar
[64]
H. Khandelwal, S. Prakash. Synthesis and Characterization of Hydroxyapatite Powder by Eggshell, J Miner. Mater. Charact. Eng. 04(02), (2016), 119–126.
DOI: 10.4236/jmmce.2016.42011
Google Scholar
[65]
N. Iqbal, T. M. Braxton, A. Anastasiou, E. M. Raif, C. K. Y. Chung, S. Kumar, P. V. Giannoudis, A. Jha. Dicalcium Phosphate Dihydrate Mineral Loaded Freeze-Dried Scaffolds for Potential Synthetic Bone Applications, Materials, 15(18), (2022), 6245.
DOI: 10.3390/ma15186245
Google Scholar
[66]
S. Yasmeen, M. K. Kabiraz, B. Saha, M. Qadir, M. Gafur, S. Masum. Chromium (VI) ions removal from tannery effluent using chitosan-microcrystalline cellulose composite as adsorbent, Int Res J Pure Appl Chem, 10(4), (2016), 1–14.
DOI: 10.9734/irjpac/2016/23315
Google Scholar
[67]
S. Marković, L. Veselinović, M. J. Lukić, L. Karanović, I. Bračko, N. Ignjatović, D. Uskoković. Synthetical bone-like and biological hydroxyapatites: a comparative study of crystal structure and morphology, Biomed. Mater. 6(4), (2011), 045005.
DOI: 10.1088/1748-6041/6/4/045005
Google Scholar
[68]
G. Balakrishnan, R. Velavan, K. M. Batoo, E. H. Raslan. Microstructure, optical and photocatalytic properties of MgO nanoparticles, Results Phys. 16, (2020), 103013.
DOI: 10.1016/j.rinp.2020.103013
Google Scholar
[69]
S.C. Cifuentes, R. Gavilán, M. Lieblich, R. Benavente, J. L. González-Carrasco. In vitro degradation of biodegradable polylactic acid/magnesium composites: Relevance of Mg particle shape. Acta Biomaterialia. 32, (2016), 348–357.
DOI: 10.1016/j.actbio.2015.12.037
Google Scholar
[70]
M. Asadollahi, E. Gerashi, M. Zohrevand, M. Zarei, S. S. Sayedain, R. Alizadeh, S. Labbaf, M. Atari, M. Improving mechanical properties and biocompatibility of 3D printed PLA by the addition of PEG and titanium particles, using a novel incorporation method. Bioprinting. 27, (2022), e00228.
DOI: 10.1016/j.bprint.2022.e00228
Google Scholar