Pedicle Screw Pitch Design: 3D-Printed Injectable Bone Substitute for Spinal Osteoporosis

Article Preview

Abstract:

This study aims to determine the effect of pitch variations on pedicle screws for spinal osteoporosis applications. Five variations of pedicle screw pitch (1.75; 2.00; 2.25; 2.50; 2.75 mm) were printed with filaments made of Polylactide Acid (PLA) using a 3D-printing with the Fused Deposition Modelling (FDM) technique. The materials mixed to make the Injectable Bone Substitute (IBS) paste injected into the pedicle screw were Hydroxyapatite (HA), gelatin, hydroxypropyl methylcellulose (HMPC), and alendronate. The pull-out test results showed that the pedicle screw with a pitch of 2.75 mm had the highest value, namely 24.568 ± 0.431 N for screws without IBS paste and 44.814 ± 0.939 N for screws with IBS paste. The results showed that the pedicle screw with the larger pitch had better pull-out and torsional test values, but the larger pitch made the characterization of the bending test decreased. Thus, it can be stated that a pedicle screw with a large pitch is suitable for spinal osteoporosis applications.

You might also be interested in these eBooks

Info:

Pages:

143-151

Citation:

Online since:

June 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Agarwal, C. Gonzalez-García, B. Torstrick, R.E. Guldberg, M. Slmerón-Sánchez, A.J. García, Simple coating with fibronectin fragment enhances stainless steel screw osseointegration in healthy and osteoporotic rats. Biomaterials. 63 (2015). 137-145

DOI: 10.1016/j.biomaterials.2015.06.025

Google Scholar

[2] T. Sözen, L. Özışık, N.Ç. Başaran. An overview and management of osteoporosis. Eur J Rheumatol. 4 (2017). 46-56

DOI: 10.5152/eurjrheum.2016.048

Google Scholar

[3] D. Patel, B. Saxena. Decoding osteoporosis: Understanding the disease, exploring current and new therapies and emerging targets. 4 (2025). 1-20. https://doi.org/10.1016/j.jorep.2024. 100472

DOI: 10.1016/j.jorep.2024.100472

Google Scholar

[4] L.G. Oliveira, M.L.R.G. Carneiro, M.P.G. de Souza, C.G.de Souza, F.B. de Moraes, F.L. de Camargo. Osteoporosis Drug Treatment Update. Rev. bras. ortop. 56 (2021)

DOI: 10.1055/s-0040-1714219

Google Scholar

[5] Y. Wang, L. Yang, C. Li, H. Sun. The Biomechanical Properties of Cement-Augmented Pedicle Screws for Osteoporotic Spines. Global Spine J. 12 (2021). 323-332

DOI: 10.1177/2192568220987214

Google Scholar

[6] M. Hollensteiner, S. Sandriesser, E. Bliven, C. von Rüden, P. Augat. Biomechanics of Osteoporotic Fracture Fixation. Curr Osteoporos Rep. 17 (2019). 363-374

DOI: 10.1007/s11914-019-00535-9

Google Scholar

[7] Y. Yao, H. Yuan, H. Huang, J. Liu, L. Wang, Y. Fan. Biomechanical design and analysis of auxetic pedicle screw to resist loosening. Computers in Biology and Medicine. 133 (2021) 104386

DOI: 10.1016/j.compbiomed.2021.104386

Google Scholar

[8] I. Konstantinidis, G.N. Nadkarni, R. Yacoub, A. Saha, P. Simoes, C. R. Parikh, S. Coca, C.G. Parikh, S.G. Coca. Representation of Patients with Kidney Disease in Trials of Cardiovascular Interventions. JAMA Internal Medicine. 176 (2016). 121-124

DOI: 10.1001/jamainternmed.2015.6102

Google Scholar

[9] B. Schliemann, N. Risse, A. Frank, M. Müller, P. Michel, M. J. Raschke, J.C. Katthagen, J. C. Screws with larger core diameter and lower thread pitch increase the stability of locked plating in osteoporotic proximal humeral fractures. Clinical Biomechanics. 63 (2019). 21–26

DOI: 10.1016/j.clinbiomech.2019.02.006

Google Scholar

[10] A. Kundoo, V. Dodwad. Effects of Implant Thread Design Around Tissues of Implant. Acta Scientific Dental Scienecs. 7 (2023). 92–100. https://actascientific.com/ASDS/pdf/ASDS-07-1687.pdf

DOI: 10.31080/asds.2023.07.1687

Google Scholar

[11] C.A. Andreucci, E.M.M. Fonseca, R.N. Jorge. Increased Material Density within a New Biomechanism. Mathematical and Computational Applications. 27 (2022). 1-9

DOI: 10.3390/mca27060090

Google Scholar

[12] ASTM Standards, F543-07. Standard specification and test methods for metallic medical bone screws, 2002.

Google Scholar

[13] T. Demir, N. Camusxcu, K. Tu¨reyen. Design and biomechanical testing of pedicle screw for osteoporotic incidents. J Engineering in Medicine. 226 (2012). 256-262

DOI: 10.1177/0954411911434680

Google Scholar

[14] S. Bennie, J.D. Crowley, T. Wang, M.H. Pelletier, W.R. Walsh. Pedicle screw pull-out testing in polyurethane foam blocks: Effect of block orientation and density. Proc Inst Mech Eng H. 238 (2024). 455–460

DOI: 10.1177/09544119241236873

Google Scholar

[15] Samirah, N.K. Yasmin, A.S. Budiatin, D.M.N. Ratri, A.N. Fauziyah, T. Aryani, D.W. Shinta. Mechanical characterisation of polylactic acid-alendronate bioscrew in different concentrations of glutaraldehyde. Pharmacy Education. 24 (2024). 101- 104

DOI: 10.1177/09544119241236873

Google Scholar

[16] Y. Amaritsakula, C.K. Chaoa, J. Linb. Biomechanical evaluation of bending strength of spinal pedicle screws, including cylindrical, conical, dual core and double dual core designs using numerical simulations and mechanical tests. Medical Engineering & Physics. 36 (2014) 1218–1223

DOI: 10.1016/j.medengphy.2014.06.014

Google Scholar

[17] T. Kima, C.W. See, X. Li, D. Zhu. Orthopedic implants and devices for bone fractures and defects: Past, present and perspective. Engineered Regeneration. 1 (2020). 8-16

DOI: 10.1016/j.engreg.2020.05.003

Google Scholar

[18] A.S. Budiatin, M.A. Gani, B.R.K.H. Putri, S. Samirah, D. Hikmawati, A.P. Putra, N. Su'aidah, J. Khotib. In vivo study of bovine hydroxyapatite-gelatin-hydroxypropyl methylcellulose with alendronate as injectable bone substitute composite in osteoporotic animal model. J Adv Pharm Technol Res. 13 (2002). 261-265

DOI: 10.4103/japtr.japtr_266_22

Google Scholar

[19] W. Weriono, M. Rusli, R.E. Sahputra, H. Dahlan. Pedicle Screw Bond Strength and Resistance Characteristics with Various Mineral Quality. TEM Journal. 13 (2024). 809-817

DOI: 10.18421/TEM131-83

Google Scholar

[20] P.E. Chatzistergos, E.A. Magnissalis, S.K. Kourkoulis. A parametric study of cylindrical pedicle screw design implications on the pullout performance using an experimentally validated finite-element model. Medical Engineering & Physics. 32 (2010). 145-154

DOI: 10.1016/j.medengphy.2009.11.003

Google Scholar

[21] F. Shen, H.J. Kim, K.T. Kang, J.S. Yeom. Comparison of the Pullout Strength of Pedicle Screws According to the Thread Design for Various Degrees of Bone Quality. Applied Sciences. 9 (2019). 1-11

DOI: 10.3390/app9081525

Google Scholar

[22] J.K. Biswas, T.P. Sahu, M. Rana, S. Roy, S.K. Karmakar, S. Majumder, A. Roychowdhury. Design factors of lumbar pedicle screws under bending load: A finite element analysis. Biocyberntics and Biomedical Engineering. 39 (2019). 52-62

DOI: 10.1016/j.bbe.2018.10.003

Google Scholar

[23] X. Feng, Z. Luo, Y. Li, Y. Yao, W. Qi, B. Chen, H. Liang. Fixation stability comparison of bone screws based on thread design: buttress thread, triangle thread, and square thread. BMC Musculoskeletal Disorders. 23 (2022). 1-10

DOI: 10.1186/s12891-022-05751-6

Google Scholar

[24] Y. Okazaki, E. Hayakawa, K. Tanahashi, J. Mori. Mechanical Performance of Metallic Bone Screws Evaluated Using Bone Models. Materials. 13 (2020). 1-21. https://doi.org/10.3390/ ma13214836

DOI: 10.3390/ma13214836

Google Scholar

[25] V. Goanta. Device for Torsional Fatigue Strength Assessment Adapted for Pulsating Testing Machines. Sensors. 22 (2022). 1-10

DOI: 10.3390/s22072667

Google Scholar

[26] S. Fu, Y. Zhang, R. Wang, X. Zou, F. Ai, J. Wang, X. Ma, H. Xia, W. Lei. Calcium phosphate cement promotes the stability of osteoporotic lumbar pedicle screw by enhancer-injecters with different number of holes. BMC Surgery. 23 (2023). 1-7

DOI: 10.1186/s12893-023-02235-9

Google Scholar

[27] T. Demir, N. Camusxcu, K. Tu¨reyen. Design and biomechanical testing of pedicle screw for osteoporotic incidents. 2012. 1-7

DOI: 10.1177/0954411911434680

Google Scholar

[28] N. A. Noda, X. Chen, Y. Sano, M. A. Wahab, H. Maruyama, R. Fujisawa, Y. Takase. Effect of pitch difference between the bolt–nut connections upon the anti-loosening performance and fatigue life. Materials and Design. 96 (2016) 476–489. https://doi.org/10.1016/ j.matdes.2016.01.128

DOI: 10.1016/j.matdes.2016.01.128

Google Scholar