Investigating the Association between Hallux Valgus Severity and Plantar Fasciitis: A Dynamic Finite Element Analysis (LS-DYNA)

Article Preview

Abstract:

The primary purpose of this study was to examine any alterations in the biomechanical relationship between hallux valgus (HV) severity and plantar fasciitis (PF) before and after intervention, utilizing a dynamic finite element (FE) method. The second purpose of this study was to further investigate the rate of contribution of each region of the plantar fascia to the before and after intervention by the approach of after processing each node using FE analysis. A male Chinese participant (age: 28 years, height: 178 cm, weight: 65 kg) with HV was enlisted for the present study. An LS-DYNA dynamic solver was used to perform a simulation of the forefoot running stance phase (before and after intervention). The results show that before intervention of the metatarsal (MT) 1-5 and plantar fascia (PF) have higher Von-Mise’s stress than after intervention throughout the forefoot running stance phase. The findings suggest that HV severity affects the incidence of PFs. By reducing the severity of HV, plantar fascia stress can be effectively reduced. In addition, this study further observed a relationship between HV severity and PFs through FE after processing. HV severity seems to be the main cause of PFs.

You might also be interested in these eBooks

Info:

Pages:

123-141

Citation:

Online since:

June 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B.V. Hooren, G. Plasqui and K. Meijer, The effect of Wearable-based real-time feedback on running injuries and running performance: a randomized controlled trial, The American Journal of Sports Medicine. 52 (2024) 750-765

DOI: 10.1177/03635465231222464

Google Scholar

[2] J.E. Taunton, M. B. Ryan, D. Clement, D.C. McKenzie, D. Lloyd-Smith and B. Zumbo, A retrospective case-control analysis of 2002 running injuries, British journal of sports medicine. 36 (2002) 95-101

DOI: 10.1136/bjsm.36.2.95

Google Scholar

[3] A. V. Vasiliadis, C. Kazas, M. Tsatlidou, P. Vazakidis and D. Metaxiotis, Plantar Injuries in Runners: Is There an Association With Weekly Running Volume?, Cureus. 13 (2021)

DOI: 10.7759/cureus.17537

Google Scholar

[4] S. C. Wearing, J. E. Smeathers, S. R. Urry, E. M. Hennig and A. P. Hills, The pathomechanics of plantar fasciitis, Sports medicine. 36 (2006) 585-611

DOI: 10.2165/00007256-200636070-00004

Google Scholar

[5] H. Wu, K. B. Wavell, D.T. Fong, M.R. Paquette and R. C. Blagrove, Do Exercise-Based Prevention Programs Reduce Injury in Endurance Runners? A Systematic Review and Meta-Analysis, Sports medicine. (2024) 1-19

DOI: 10.1007/s40279-024-01993-7

Google Scholar

[6] B. Hanley, C. B. Tucker, A. Bissas, S. Merlino and A. H. Gruber, Footstrike patterns and race performance in the 2017 IAAF World Championship men's 10,000 m final, Sports Biomechanics. (2021) 1-10

DOI: 10.1080/14763141.2020.1856916

Google Scholar

[7] M. O. Almeida, I. S. Davis and A. D. Lopes, Biomechanical differences of foot-strike patterns during running: a systematic review with meta-analysis, journal of orthopaedic & sports physical therapy. 45 (2015) 738-755

DOI: 10.2519/jospt.2015.6019

Google Scholar

[8] M. R. Paquette, S. Zhang and L. D. Baumgartner, Acute effects of barefoot, minimal shoes and running shoes on lower limb mechanics in rear and forefoot strike runners, Footwear Science. 5 (2013) 9-18

DOI: 10.1080/19424280.2012.692724

Google Scholar

[9] L. L. Landreneau, K. Watts, J. E. Heitzman and W. L. Childers, Lower limb muscle activity during forefoot and rearfoot strike running techniques, International journal of sports physical therapy. 9 (2014) 888

Google Scholar

[10] D. E. Lieberman, What we can learn about running from barefoot running: an evolutionary medical perspective, Exercise and sport sciences reviews. 40 (2012) 63-72

DOI: 10.1097/jes.0b013e31824ab210

Google Scholar

[11] A. I. Daoud, G. J. Geissler, F. Wang, J. Saretsky, Y. A. Daoud and D. E. Lieberman, Foot strike and injury rates in endurance runners: a retrospective study, Med Sci Sports Exerc. 44 (2012) 1325-1334

DOI: 10.1249/mss.0b013e3182465115

Google Scholar

[12] A. Cobden, Y. Camurcu, H. Sofu, H. Ucpunar, S. Duman and A. Kocabiyik, Evaluation of the association between plantar fasciitis and hallux valgus, Journal of the American Podiatric Medical Association. 110 (2020)

DOI: 10.7547/17-150

Google Scholar

[13] D. L. Rosemberg, J. A. Gustafson, G. Bordignon, D. D. Bohl, G. Leporace and L.Metsavaht, Biokinetic evaluation of hallux valgus during gait: a systematic review, Foot & ankle international. 44 (2023) 763-777

DOI: 10.1177/10711007231166667

Google Scholar

[14] L. Ji, S. Ding, M. Zhang, K. C. Reyes, M. Zhu and C. Sun, The role of first tarsometatarsal joint morphology and instability in the etiology of hallux valgus: A case-control study, Foot & Ankle International. 44 (2023) 778-787

DOI: 10.1177/10711007231175846

Google Scholar

[15] M. Yavuz, V. J. Hetherington, G. Botek, G. B. Hirschman, L. Bardsley and B. L. Davis, Forefoot plantar shear stress distribution in hallux valgus patients, Gait & posture. 30 (2009) 257-259

DOI: 10.1016/j.gaitpost.2009.05.002

Google Scholar

[16] T. X. Qiu, E. C. Teo, Y. B. Yan and W. Lei, Finite element modeling of a 3D coupled foot–boot model, Medical engineering & physics. 33 (2011) 1228-1233

DOI: 10.1016/j.medengphy.2011.05.012

Google Scholar

[17] T, Serkan, and A, Çetin, Mechanical properties and morphologic features of intrinsic foot muscles and plantar fascia in individuals with hallux valgus, Acta Orthopaedica et Traumatologica Turcica. 53 (2019) 282-286.

DOI: 10.1016/j.aott.2019.03.009

Google Scholar

[18] C. C. Lobo, A. G. Marín, D. R. Sanz, D. L. López , Ultrasound evaluation of intrinsic plantar muscles and fascia in hallux valgus: A case-control study. Medicine. 95 (2016) e5243.

DOI: 10.1097/md.0000000000005243

Google Scholar

[19] Y. Aranda, P. V. Munuera, Plantar fasciitis and its relationship with hallux limitus, Journal of the American Podiatric Medical Association. 104 (2014) 263-268.

DOI: 10.7547/0003-0538-104.3.263

Google Scholar

[20] A. P. T. Association, Heel pain--plantar fasciitis: clinical practice guildelines linked to the international classification of function, disability, and health from the orthopaedic section of the American Physical Therapy Association, The Journal of orthopaedic and sports physical therapy. 38 (2008) A1-A18

DOI: 10.2519/jospt.2023.0303

Google Scholar

[21] S. L. Delp, F. C. Anderson, A. S. Arnold, P. Loan, A. Habib, C. T. John, E. Guendelman and D. G. Thelen, OpenSim: open-source software to create and analyze dynamic simulations of movement, 54 (2007) 1940-1950

DOI: 10.1109/tbme.2007.901024

Google Scholar

[22] P. Yu, X. Cen, Q. Mei, A. Wang, Y. Gu and J. Fernandez, Differences in intra-foot movement strategies during locomotivetasks among chronic ankle instability, copers and healthyindividuals, Journal of biomechanics. 162 (2024): 111865.

DOI: 10.1016/j.jbiomech.2023.111865

Google Scholar

[23] Z. Zhou, H. Zhou, T. Jie, D. Xu, E.-C. Teo, M. Wang and Y. Gu, Analysis of stress response distribution in patients with lateral ankle ligament injuries: a study of neural control strategies utilizing predictive computing models, Frontiers in Physiology. 15 (2024) 1438194

DOI: 10.3389/fphys.2024.1438194

Google Scholar

[24] H. Zhou, D. Xu, W. Quan, U. C. Ugbolue, N. F. Sculthorpe, J. S. Baker and Y. Gu, A foot joint and muscle force assessment of the running stance phase whilst wearing normal shoes and bionic shoes, Acta Bioeng. Biomech. 24 (2022) 191-202

DOI: 10.37190/abb-02022-2022-03

Google Scholar

[25] C. Pailler-Mattei, S. Bec and H. Zahouani, In vivo measurements of the elastic mechanical properties of human skin by indentation tests, Medical engineering & physics. 30 (2008) 599-606

DOI: 10.1016/j.medengphy.2007.06.011

Google Scholar

[26] J. A. Weiss, B. N. Maker, S. Govindjee and engineering, Finite element implementation of incompressible, transversely isotropic hyperelasticity, Computer Methods in Applied Mechanics and Engineering. 135 (1996) 107-128

DOI: 10.1016/0045-7825(96)01035-3

Google Scholar

[27] K. Risvas, D. Stanev, L. Benos, K. Filip, D .Tsaopoulos and K. Moustakas, Evaluation of anterior cruciate ligament surgical reconstruction through finite element analysis, Scientific Reports. 12 (2022) 8044

DOI: 10.1038/s41598-022-11601-1

Google Scholar

[28] J. A. Weiss, J. C. Gardiner and C. Bonifasi-Lista, Ligament material behavior is nonlinear, viscoelastic and rate-independent under shear loading, Journal of Biomechanics. 35 (2002) 943-950

DOI: 10.1016/s0021-9290(02)00041-6

Google Scholar

[29] Z. Zhou, D. Xu, H. Zhou, E.-C. Teo, J. S. Baker and Y. Gu, Distinct Motion Control Strategy During Unanticipated Landing: Transitioning from Copers to Chronic Ankle Instability, Journal of Biomimetics Biomaterials and Biomedical Engineering. 65 (2024) 15-32

DOI: 10.4028/p-s3ka1k

Google Scholar

[30] J. Pan, M. Ho, R. Loh, M. Iskandar, P. W. Kong, Foot Morphology and Running Gait Pattern between the Left and Right Limbs in Recreational Runners, Physical Activity and Health. (2023)

DOI: 10.5334/paah.226

Google Scholar

[31] T. Cover and P. Hart, Nearest neighbor pattern classification, IEEE transactions on information theory. 13 (1967) 21-27

DOI: 10.1109/tit.1967.1053964

Google Scholar

[32] C. Cortes and V. Vapnik, Support-vector networks, Machine learning. 20 (1995) 273-297

DOI: 10.1007/bf00994018

Google Scholar

[33] R. P. Lippmann, An introduction to computing with neural nets, ACM SIGARCH Computer Architecture News. 16 (1988) 7-25

DOI: 10.1145/44571.44572

Google Scholar

[34] D. Xu, H. Zhou, W. Quan, X. Jiang, M. Liang, S. Li, U. C. Ugbolue, J. S. Baker, F. Gusztav, X. Ma, L. Chen and Y. Gu, A new method proposed for realizing human gait pattern recognition: inspirations for the application of sports and clinical gait analysis, Gait & posture. 107 (2024) 293-305

DOI: 10.1016/j.gaitpost.2023.10.019

Google Scholar

[35] D. Xu, J. Lu, J. S. Baker and Y. Gu, Temporal kinematic and kinetics differences throughout different landing ways following volleyball spike shots, Proceedings of the Institution of Mechanical Engineers. 236 (2022) 200-208

DOI: 10.1177/17543371211009485

Google Scholar

[36] L. E. Peterson, K-nearest neighbor, Scholarpedia. 4 (2009) 1883

Google Scholar

[37] D. Xu, H. Zhou, W. Quan, F. Gusztav, M. Wang, J. S. Baker and Y. Gu, Accurately and effectively predict the ACL force: Utilizing biomechanical landing pattern before and after-fatigue, Computer Methods and Programs in Biomedicine. 241 (2023) 107761

DOI: 10.1016/j.cmpb.2023.107761

Google Scholar

[38] S. Suthaharan and S. Suthaharan, Support vector machine, Machine Learning Models and Algorithms for Big Data Classification. (2016) 207-235

DOI: 10.1007/978-1-4899-7641-3_9

Google Scholar

[39] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu and F. E. Alsaadi, A survey of deep neural network architectures and their applications, Neurocomputing. 234 (2017) 11-26

DOI: 10.1016/j.neucom.2016.12.038

Google Scholar

[40] D. Xu, W. Quan, H. Zhou, D. Sun, J. S. Baker and Y. Gu, Explaining the differences of gait patterns between high and low-mileage runners with machine learning, Scientific Reports. 12 (2022) 1-12

DOI: 10.1038/s41598-022-07054-1

Google Scholar

[41] T. Kohonen, An introduction to neural computing, Neural networks. 1 (1988) 3-16

Google Scholar

[42] Y. Peng, Y. Wang, D. W. Wong, T. L. Chen, S. Chen, G. Zhang, Q. Tan and M. Zhang, Different design feature combinations of flatfoot orthosis on plantar fascia strain and plantar pressure: A muscle-driven finite element analysis with taguchi method, Frontiers in bioengineering and biotechnology. 10 (2022) 853085

DOI: 10.3389/fbioe.2022.853085

Google Scholar

[43] J.D. Rodriguez, A. Perez and J. A. Lozano, Sensitivity analysis of k-fold cross validation in prediction error estimation, IEEE transactions on pattern analysis and machine intelligence. 32 (2009) 569-575

DOI: 10.1109/tpami.2009.187

Google Scholar

[44] P. Refaeilzadeh, L. Tang and H. Liu, Cross-validation, Encyclopedia of database systems. 5 (2009) 532-538

DOI: 10.1007/978-0-387-39940-9_565

Google Scholar

[45] D. Xu, H. Zhou, W. Quan, X. Ma, T. E. Chon, J. Fernandez, F. Gusztav, A. Kovács, J. S. Baker and Y. Gu, New insights optimize landing strategies to reduce lower limb injury risk, Cyborg and Bionic Systems. 5 (2024) 0126

DOI: 10.34133/cbsystems.0126

Google Scholar

[46] J. P. Huerta, The effect of the gastrocnemius on the plantar fascia, Foot and ankle clinics. 19 (2014) 701-718.

DOI: 10.1016/j.fcl.2014.08.011

Google Scholar

[47] R. A. MANN and M. J. COUGHLIN, Hallux valgus—etiology, anatomy, treatment and surgical considerations, Clinical Orthopaedics and Related Research®. 157 (1981) 31-41

DOI: 10.1097/00003086-198106000-00008

Google Scholar

[48] M. M. Stephens, Pathogenesis of hallux valgus, Foot and ankle surgery. 1 (1994) 7-10

DOI: 10.1016/s1268-7731(05)80050-5

Google Scholar

[49] T. Jie, J. Li, E. C. Teo, Limb biomechanical difference between bounced and alternating jumping rope, International Journal of Biomedical Engineering and Technology. (2024)

DOI: 10.1504/ijbet.2024.138714

Google Scholar

[50] A. Asghar, S. Naaz, The transverse arch in the human feet: A narrative review of its evolution, anatomy, biomechanics and clinical implications, Morphologie. 106 (2022) 225-234

DOI: 10.1016/j.morpho.2021.07.005

Google Scholar

[51] H. B. Menz, M. Marshall, M. J. Thomas T. R. Mistry, G. M. Peat and E. Roddy, Incidence and progression of hallux valgus: a prospective cohort study, Arthritis Care & Research. 75 (2023) 166-173

DOI: 10.1002/acr.24754

Google Scholar

[52] C. M. Mikhail, J. Markowitz, L. D. Lenarda, J. Guzman and E. Vulcano, Clinical and radiographic outcomes of percutaneous chevron-Akin osteotomies for the correction of hallux valgus deformity, Foot & Ankle International. 43 (2022) 32-41

DOI: 10.1177/10711007211031218

Google Scholar