Impact of Annealing Treatment on the Green Synthesis of Magnetite (Fe3O4) Nanoparticles Using Citrus limon Juice for Antibacterial Activities

Article Preview

Abstract:

Magnetite nanoparticles are synthesized in an environmentally friendly way by utilizing natural ingredients found in citrus limon juice. The acid in citrus limon juice serves as a fuel for the sol-gel process, producing magnetite nanoparticles. Annealing treatment (400°C, 500°C, and 600°C) is used to change the structural and magnetic properties of the magnetite nanoparticles. All samples magnetite phase was verified by X-Ray Diffraction (XRD) examination. Increasing the annealing temperature causes an increase in crystallite size from 10.81 to 27.30 nm. Furthermore, the results of infrared spectroscopy revealed the presence of oxide bonds (M-O) in the range 558–567 cm-1 and 408–437 cm-1, which are Fe-O bonds. Magnetic properties also change as a result of the annealing treatment, which is characterized by increased saturation magnetization and changes in other magnetic parameters. Furthermore, green synthesis of magnetite nanoparticles is effective against gram-negative bacteria (E. Coli) with enhanced antibacterial performance.

You might also be interested in these eBooks

Info:

Pages:

43-51

Citation:

Online since:

June 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F.S. Braim, N.N.A. Nik Ab Razak, A.A. Aziz, M.A. Dheyab, L.Q. Ismael, Ceram. Int. 49, 7359–7369 (2023).

DOI: 10.1016/j.ceramint.2022.10.207

Google Scholar

[2] M.I.A.A. Maksoud, G.S. El-Sayyad, A.H. Ashour, A.I. El-Batal, M.A. Elsayed, M. Gobara, A.M. El-Khawaga, E.K. Abdel-Khalek, M.M. El-Okr, Microb. Pathog. 127, 144–158 (2019).

DOI: 10.1016/j.micpath.2018.11.045

Google Scholar

[3] A. Samavati, A. F. Ismail, Particuology 30, 158–163 (2017). https://doi.org/10.1016/j.partic. 2016.06.003.

Google Scholar

[4] S. Kalia, V. Dhiman, T. Tekou Carol T., D. Basandrai, N. Prasad, Inorg. Chem. Commun. 150, 110382 (2023).

DOI: 10.1016/j.inoche.2022.110382

Google Scholar

[5] K. Ishaq, A.A. Saka, A.O. Kamardeen, A. Ahmed, M.I. haq Alhassan, H. Abdullahi, Eng. Sci. Technol. an Int. J. 20, 563–569 (2017).

DOI: 10.1016/j.jestch.2016.12.008

Google Scholar

[6] T.T. Van Nguyen, Q.K. Nguyen, N.Q. Thieu, H.D.T. Nguyen, T.G.T. Ho, B.L. Do, T.T.P. Pham, T. Nguyen, H. Ky Phuong Ha, Heliyon 9, e22319 (2023).

DOI: 10.1016/j.heliyon.2023.e22319

Google Scholar

[7] M. Rahmayanti, A. Nurul Syakina, I. Fatimah, T. Sulistyaningsih, Chem. Phys. Lett. 803 (2022).

DOI: 10.1016/j.cplett.2022.139834

Google Scholar

[8] E.C. Nnadozie, P.A. Ajibade, Int. J. Electrochem. Sci. 17, 22124 (2022).

DOI: 10.20964/2022.12.05

Google Scholar

[9] S. Swathi, R. Yuvakkumar, P.S. Kumar, G. Ravi, D. Velauthapillai, Chemosphere, 281 (2021).

DOI: 10.1016/j.chemosphere.2021.130903

Google Scholar

[10] S. Manjunatha, B.C. Reddy, H.C. Manjunatha, Y.S. Vidya, K.N. Sridhar, L. Seenappa, R. Munirathnam, A.N. Santhosh, V. Thirunavukkarasu, P.S.D. Gupta, S. Aluri, T.Y.M. Kumar, U.M. Pasha, M.S. Dharmaprakash, Mater. Sci. Eng. B 286 (2022).

DOI: 10.1016/j.mseb.2022.115978

Google Scholar

[11] M.M. Naik, H.S.B. Naik, N. Kottam, M. Vinuth, G. Nagaraju, M.C. Prabhakara, J. Sol-Gel Sci. Technol. 91, 578–595 (2019).

DOI: 10.1007/s10971-019-05048-6

Google Scholar

[12] A.K. Vishwakarma, B. Sen Yadav, J. Singh, S. Sharma, N. Kumar, Mater. Today Commun. 31, 103229 (2022).

DOI: 10.1016/j.mtcomm.2022.103229

Google Scholar

[13] G. Vallejo-Espinosa, A. Pérez-Larios, K. Nava-Andrade, Mater. Lett. 372 (2024).

DOI: 10.1016/j.matlet.2024.136980

Google Scholar

[14] P.K. Dhar, P. Saha, M.K. Hasan, M.K. Amin, M.R. Haque, Clean. Eng. Technol. 3 (2021) 100117.

DOI: 10.1016/j.clet.2021.100117

Google Scholar

[15] Q. Zhang, Y. Zhang, Y. Li, P. Ding, S. Xu, J. Cao, Int. J. Hydrogen Energy 46, 20413 (2021)–20424.

DOI: 10.1016/j.ijhydene.2021.03.142

Google Scholar

[16] E.K. Sari, R.M. Tumbelaka, H. Ardiyanti, N.I. Istiqomah, Chotimah, E. Suharyadi, Carbon Resour. Convers. 6, 274–286 (2023).

DOI: 10.1016/j.crcon.2023.04.003

Google Scholar

[17] F. Azadi, A. Karimi-Jashni, M.M. Zerafat, Ecotoxicol. Environ. Saf. 165, 467–475 (2018).

DOI: 10.1016/j.ecoenv.2018.09.032

Google Scholar

[18] H.H. Mohamed, D.H.A. Besisa, N. Besisa, T.E. Youssef, Mater. Sci. Eng. B 296, 116634 (2023).

DOI: 10.1016/j.mseb.2023.116634

Google Scholar

[19] A. Cheraghi, F. Davar, M. Homayoonfal, A. Hojjati-Najafabadi, Ceram. Int. 47, 20210–20219 (2021).

DOI: 10.1016/j.ceramint.2021.04.028

Google Scholar

[20] F.V. Gutierrez, I.S. Lima, A. De Falco, B.M. Ereias, O. Baffa, C. Diego de Abreu Lima, L.I. Morais Sinimbu, P. de la Presa, C. Luz-Lima, J.F. Damasceno Felix Araujo, Heliyon 10, e25781 (2024).

DOI: 10.1016/j.heliyon.2024.e25781

Google Scholar

[21] S. V. Bhandare, R. Kumar, A. V. Anupama, H.K. Choudhary, V.M. Jali, B. Sahoo, Ceram. Int. 46, 17400–17415 (2020).

DOI: 10.1016/j.ceramint.2020.04.031

Google Scholar

[22] N.P. Prasetya, R. Arilasita, H. Aldila, N.A. Wibowo, Riyatun, Utari, Nuryani, T. Tanaka, B. Purnama, Nano-Structures and Nano-Objects 39, 101301 (2024).

DOI: 10.1016/j.nanoso.2024.101301

Google Scholar

[23] M.A. Amer, T.M. Meaz, A.G. Mostafa, H.F. El-Ghazally, Mater. Res. Bull. 67, 207–214 (2015).

DOI: 10.1016/j.materresbull.2015.03.031

Google Scholar

[24] Nitika, A. Rana, V. Kumar, A.M. Awasthi, Ceram. Int. 47, 20669–20677 (2021).

DOI: 10.1016/j.ceramint.2021.04.077

Google Scholar

[25] Riyatun, T. Kusumaningsih, A. Supriyanto, B. Purnama, Mater. Res. Express 10 (2023).

DOI: 10.1088/2053-1591/acd73f

Google Scholar

[26] C. Prasad, G. Yuvaraja, P. Venkateswarlu, J. Magn. Magn. Mater. 424, 376–381 (2017).

DOI: 10.1016/j.jmmm.2016.10.084

Google Scholar

[27] M. Stan, I. Lung, M.L. Soran, O. Opris, C. Leostean, A. Popa, F. Copaciu, M.D. Lazar, I. Kacso, T.D. Silipas, A.S. Porav, J. Taiwan Inst. Chem. Eng. 100, 65–73 (2019).

DOI: 10.1016/j.jtice.2019.04.006

Google Scholar

[28] T. Sulistyaningsih, D.A. Sari, N. Widiarti, W. Astuti, R. Wulandari, D. Harjunowibowo, Waste Manag. Bull. 2, 327–339 (2024).

DOI: 10.1016/j.wmb.2024.02.007

Google Scholar

[29] N.P. Prasetya, R.I. Setiyani, Utari, K. Kusumandari, Y. Iriani, J. Safani, A. Taufiq, N.A. Wibowo, S. Suharno, B. Purnama, Mater. Res. Express 10 (2023).

DOI: 10.1088/2053-1591/acc011

Google Scholar

[30] E.H. El-Ghazzawy, J. Magn. Magn. Mater. 497, 166017 (2020).

DOI: 10.1016/j.jmmm.2019.166017

Google Scholar

[31] B. Abraime, K. El Maalam, L. Fkhar, A. Mahmoud, F. Boschini, M. Ait Tamerd, A. Benyoussef, M. Hamedoun, E.K. Hlil, M. Ait Ali, A. El Kenz, O. Mounkachi, J. Magn. Magn. Mater. 500, 166416 (2020).

DOI: 10.1016/j.jmmm.2020.166416

Google Scholar

[32] I.C. Nlebedim, D.C. Jiles, J. Appl. Phys. 117, 1–5 (2015).

DOI: 10.1063/1.4919229

Google Scholar

[33] Riyatun, T. Kusumaningsih, A. Supriyanto, H.B. Akmal, F.M. Zulhaina, N.P. Prasetya, B. Purnama, Results Eng. 18, 101085 (2023).

DOI: 10.1016/j.rineng.2023.101085

Google Scholar

[34] B. Purnama, A.T. Wijayanta, Suharyana, J. King Saud Univ. - Sci. 31, 956–960 (2019).

DOI: 10.1016/j.jksus.2018.07.019

Google Scholar

[35] S. V. Gudkov, D.E. Burmistrov, D.A. Serov, M.B. Rebezov, A.A. Semenova, A.B. Lisitsyn, Antibiotics 10, 1–23 (2021).

DOI: 10.3390/antibiotics10070884

Google Scholar

[36] K. Khalid, A. Zahra, U. Amara, M. Khalid, M. Hanif, M. Aziz, K. Mahmood, M. Ajmal, M. Asif, K. Saeed, M.F. Qayyum, W. Abbas, Chemosphere 338 (2023).

DOI: 10.1016/j.chemosphere.2023.139531

Google Scholar

[37] M. Shahriarinour, F. Divsar, A. Mehdipour, L. Youseftabar-Miri, V. Barkhordri, Antibacterial, Arab. J. Sci. Eng. 48, 7315–7322 (2023).

DOI: 10.1007/s13369-023-07811-y

Google Scholar

[38] R. Anusa, C. Ravichandran, T. V Rajendran, M. V Arularasu, E.K.T. Sivakumar, Dig. J. Nanomater. Biostructures 14, 367–374 (2019).

Google Scholar