[1]
Bin Liu, Jin Wang, Kaiwei Sun, Grigorios Tsoumakas. Fine-grained selective similarity integration for drug–target interaction prediction. Briefings in Bioinformatics, 24(2) 2023 1-12.
DOI: 10.1093/bib/bbad085
Google Scholar
[2]
Cheng Yan, Guihua Duan, Yayan Zhang, Fang-Xiang Wu, Yi Pan, Jianxin Wang. Predicting drug-drug interactions Based on integrated similarity and semi-Supervised learning. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 19(1) (2022) 168-179.
DOI: 10.1109/tcbb.2020.2988018
Google Scholar
[3]
Eugenio Mazzone, Yves Moreau, Piero Fariselli, Daniele Raimondi. Nonlinear data fusion over entity-relation graphs for drug-target interaction prediction. Bioinformatics, 39(6) (2023) btad348.
DOI: 10.1093/bioinformatics/btad348
Google Scholar
[4]
Ali Ghanbari Sorkhi, Zahra Abbasi, Majid Iranpour Mobarakeh, Jamshid Pirgazi. Drug-target interaction prediction using unifying of graph regularized nuclear norm with bilinear factorization. BMC Bioinformatics, 22(555) (2021) 1-23.
DOI: 10.1186/s12859-021-04464-2
Google Scholar
[5]
Donghua Yu, Huawen Liu, Shuang Yao. Drug-target interaction prediction based on improved heterogeneous graph representation learning and feature projection classification. Expert Systems with Application, 252 (2024) 124289.
DOI: 10.1016/j.eswa.2024.124289
Google Scholar
[6]
Yi Luo, Guihua Duan, Qichang Zhao, Xuehua Bi, Jianxin Wan. DTKGIN: Predicting drug-target interactions based on knowledge graph and intent graph. Methods, 226 (2024) 21–27.
DOI: 10.1016/j.ymeth.2024.04.010
Google Scholar
[7]
Bin Liu, Konstantinos Pliakos, Celine Vens, Grigorios Tsoumakas. Drug-target interaction prediction via an ensemble of weighted nearest neighbors with interaction recovery. Applied Intelligence, 52(2022) 3705–3727.
DOI: 10.1007/s10489-021-02495-z
Google Scholar
[8]
Yu Wang, Yu Zhang, Jianchun Wang, Fang Xie, Dequan Zheng, Xiang Zou, Mian Guo, Yijie Ding, Jie Wan, Ke Han. Prediction of drug-target interactions via neural tangent kernel extraction feature matrix factorization model. Computers in Biology and Medicine, 159 (2023) 106955.
DOI: 10.1016/j.compbiomed.2023.106955
Google Scholar
[9]
Huan Wang, Ruigang Liu, Baijing Wang, Yifan Hong, Ziwen Cui, Qiufen Ni. Multitype perception method for drug-target interaction prediction. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 20(6) (2023) 3489-3498.
DOI: 10.1109/tcbb.2023.3285042
Google Scholar
[10]
Yijie Ding, Jijun Tang, Fei Guo. Identification of drug-target interactions via fuzzy bipartite local model. Neural Computing and Applications, 32(2020) 10303-10309.
DOI: 10.1007/s00521-019-04569-z
Google Scholar
[11]
Yu Zhang, Qian Liao, Prayag Tiwari, Ying Chu, Yu Wang, Yi Ding, Xianyi Zhao, Jie Wan, Yijie Ding, Ke Han. MvG-NRLMF: Multi-view graph neighborhood regularized logistic matrix factorization for identifying drug–target interaction. Future Generation Computer Systems, 160 (2024) 844–853.
DOI: 10.1016/j.future.2024.06.046
Google Scholar
[12]
Sangjin Ahn, Si Eun Lee, Mi‑hyun Kim. Random-forest model for drug–target interaction prediction via Kullbeck–Leibler divergence. Journal of Cheminformatics, 14(67) (2022) 1-13.
DOI: 10.21203/rs.3.rs-1357588/v1
Google Scholar
[13]
Heba Behery, Abdel‑Fattah Attia, Nawal Fishawy, Hanaa Torkey. An ensemble‑based drug–target interaction prediction approach using multiple feature information with data balancing. Journal of Biological Engineering, 16(21) (2022) 1-14.
DOI: 10.1186/s13036-022-00296-7
Google Scholar
[14]
Konstantinos Pliakos, Celine Vens, Grigorios Tsoumakas. Predicting drug-target interactions with multi-label classification and label partitioning. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 18(4) (2021) 1596–1607.
DOI: 10.1109/tcbb.2019.2951378
Google Scholar
[15]
Mohammad Reza Keyvanpour, Yasaman Asghari, Soheila Mehrmolaei. HEnsem_DTIs: A heterogeneous ensemble learning model for drug-target interactions prediction. Chemometrics and Intelligent Laboratory Systems, 253 (2024) 105224.
DOI: 10.1016/j.chemolab.2024.105224
Google Scholar
[16]
Ali Ezzat, MinWu, Xiao-LiLi, Chee-KeongKwoh. Drug-target interaction prediction using ensemble learning and dimensionality reduction. Methods, 129(1) (2017) 81-88.
DOI: 10.1016/j.ymeth.2017.05.016
Google Scholar
[17]
Majun Lian, Xinjie Wang, Wenli Du. Drug-target interactions prediction based on network topology feature representation embedded deep forest. Neurocomputing, 551 (2023) 126509.
DOI: 10.1016/j.neucom.2023.126509
Google Scholar
[18]
Guanyu Qiao, Guohua Wang, Yang Li. Causal enhanced drug-target interaction prediction based on graph generation and multi-source information fusion. Bioinformatics, 40(10) (2024) btae570.
DOI: 10.1093/bioinformatics/btae570
Google Scholar
[19]
Khandakar Tanvir Ahmed, Md. Istiaq Ansari, Wei Zhang. DTI-LM: language model powered drug–target interaction prediction. Bioinformatics, 40(9) (2024) btae533.
DOI: 10.1093/bioinformatics/btae533
Google Scholar
[20]
Yang Hua, Zhenhua Feng, Xiaoning Song, Xiao-Jun Wu, Josef Kittler. MMDG-DTI: Drug-target interaction prediction via multimodal feature fusion and domain generalization. Pattern Recognition, 157 (2025) 110887.
DOI: 10.1016/j.patcog.2024.110887
Google Scholar
[21]
Jingru Wang, Yihang Xiao, Xuequn Shang, Jiajie Peng. Predicting drug-target binding affinity with cross-scale graph contrastive learning. Briefings in Bioinformatics, 25(1) (2024) 1-9.
DOI: 10.1093/bib/bbad516
Google Scholar
[22]
Qi Zhang, Le Zuo, Ying Ren, Siyuan Wang, Wenfa Wang, Lerong Ma, Jing Zhang, Bisheng Xia. FMCA-DTI: a fragment-oriented method based on a multihead cross attention mechanism to improve drug-target interaction prediction. Bioinformatics, 40(6) (2024) btae347.
DOI: 10.1093/bioinformatics/btae347
Google Scholar
[23]
Yansen Su, Zhiyang Hu, Fei Wang, Yannan Bin, Chunhou Zheng, Haitao Li, Haowen Chen, Xiangxiang Zeng. AMGDTI: drug-target interaction prediction based on adaptive meta-graph learning in heterogeneous network. Briefings in Bioinformatics, 25(1) (2023) 1-11
DOI: 10.1093/bib/bbad474
Google Scholar
[24]
Youzhi Liu, Linlin Xing, Longbo Zhang, Hongzhen Cai, Maozu Guo. GEFormerDTA: drug target affinity prediction based on transformer graph for early fusion. Scientific Reports, 14(2024) 7416.
DOI: 10.1038/s41598-024-57879-1
Google Scholar
[25]
Qiao Ning, Yue Wang, Yaomiao Zhao, Jiahao Sun, Lu Jiang, Kaidi Wang, Minghao Yin. DMHGNN: Double multi-view heterogeneous graph neural network framework for drug-target interaction prediction. Artificial Intelligence in Medicine, 159 (2025) 103023.
DOI: 10.1016/j.artmed.2024.103023
Google Scholar
[26]
Yuxuan Wang, Ying Xia, Junchi Yan, Ye Yuan, Hong-Bin Shen, Xiaoyong Pan. ZeroBind: a protein-specific zero-shot predictor with subgraph matching for drug-target interactions. Nature Communications, 14(2023) 7861.
DOI: 10.1038/s41467-023-43597-1
Google Scholar
[27]
Yining Xie, Xiaodong Wang, Pengda Wang, Xueyan Bi. A pseudo-label supervised graph fusion attention network for drug-target interaction prediction. Expert Systems with Applications, 259 (2025) 125264.
DOI: 10.1016/j.eswa.2024.125264
Google Scholar
[28]
Yan Sun, Yan Yi Li, Carson K Leung, Pingzhao Hu. iNGNN-DTI: prediction of drug-target interaction with interpretable nested graph neural network and pretrained molecule models. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 40(3) 2024 1-12.
DOI: 10.1093/bioinformatics/btae135
Google Scholar
[29]
Mei Li, Xiangrui Cai, Sihan Xu, Hua Ji. Meta path-aggregated heterogeneous graph neural network for drug-target interaction prediction. Briefings in Bioinformatics, 24(1) (2023) 1-17.
DOI: 10.1093/bib/bbac578
Google Scholar
[30]
Hailong Yang, Yue Chen, Yun Zuo, Zhaohong Deng, Xiaoyong Pan, Hong-Bin Shen, Kup-Sze Choi, Dong-Jun Yu. MINDG: a drug–target interaction prediction method based on an integrated learning algorithm. Bioinformatics, 40(4) (2024)1-8.
DOI: 10.1093/bioinformatics/btae147
Google Scholar
[31]
Yang Li, Yuan Huang, Zhuhong You, Liping Li, Zheng Wang. MDTips: a multimodal-data-based drug-target interaction prediction system fusing knowledge, gene expression profile, and structural data. Bioinformatics, 39(7) (2023) btad411.
DOI: 10.1093/bioinformatics/btad411
Google Scholar
[32]
Yang Yue, Shan He. DEDTI versus IEDTI: efficient and predictive models of drug-target interactions. Scientific Reports, 13(2023) 1-18.
DOI: 10.1038/s41598-023-36438-0
Google Scholar
[33]
Zhimiao Yu, Jiarui Lu, Yuan Jin, and Yang Yang. KenDTI: an ensemble model for predicting drug-target interaction by integrating multi-source information. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 18(4) (2021) 1305-1314.
DOI: 10.1109/tcbb.2021.3074401
Google Scholar
[34]
Jehad Aldahdooh, Markus Vähä‑Koskela, Jing Tang, Ziaurrehman Tanoli. Using BERT to identify drug‑target interactions from whole PubMed. Chemometrics and Intelligent Laboratory Systems, 245(23) (2022) 1-13.
DOI: 10.1101/2021.09.10.459845
Google Scholar
[35]
Ali Ezzat, Min Wu, Xiao-Li Li, Chee-Keong Kwoh. Drug-target interaction prediction via class imbalance-aware ensemble learning. BMC Bioinformatics, 17(19) (2016) 267-276.
DOI: 10.1186/s12859-016-1377-y
Google Scholar
[36]
Farshid Rayhan, Sajid Ahmed, Swakkhar Shatabda, Dewan Md Farid, Zaynab Mousavian, Abdollah Dehzangi, M. Sohel Rahman. iDTI-ESBoost: identification of drug target interaction using evolutionary and structural features with boosting. Scientific Reports, 7(1) (2017) 17731-17748.
DOI: 10.1038/s41598-017-18025-2
Google Scholar
[37]
S.M. Hasan Mahmud, Wenyu Chen, Han Meng, Hosney Jahan, Yongsheng Liu S.M. Mamun Hasan. Prediction of drug-target interaction based on protein features using under sampling and feature selection techniques with boosting. Analytical Biochemistry, 589(2020) 1-14.
DOI: 10.1016/j.ab.2019.113507
Google Scholar
[38]
Shweta Redkar, Sukanta Mondal, Alex Joseph, K. S. Hareesha. Machine learning approach for drug-target interaction prediction using wrapper feature selection and class balancing. Molecular information, 39(5) (2020)1900062.
DOI: 10.1002/minf.201900062
Google Scholar
[39]
Twan van Laarhoven, Sander B. Nabuurs, Elena Marchiori. Gaussian interaction profile kernels for predicting drug-target interaction. Bioinformatics, 21(2011) 3036-3043.
DOI: 10.1093/bioinformatics/btr500
Google Scholar
[40]
L. Breiman. Random forests. Machine Learning, 45(1) (2001) 5-32.
Google Scholar
[41]
Yoshihiro Yamanishi 1, Michihiro Araki, Alex Gutteridge, Wataru Honda, Minoru Kanehisa. Prediction of drug–target interaction networks from the integration of chemical and genomic spaces. Bioinformatics, 24(13) (2008) 1232–1240.
DOI: 10.1093/bioinformatics/btn162
Google Scholar
[42]
Yasuo Tabei, Edouard Pauwels, Véronique Stoven, Kazuhiro Takemoto, Yoshihiro Yamanishi. Identification of chemogenomic features from drug-target interaction networks using interpretable classifiers. Bioinformatics, 28(18) (2012) i487-i494
DOI: 10.1093/bioinformatics/bts412
Google Scholar
[43]
David S Wishart, Yannick D Feunang, An C Guo, Elvis J Lo, Ana Marcu, Jason R Grant, Tanvir Sajed, Daniel Johnson, Carin Li, Zinat Sayeeda, Nazanin Assempour, Ithayavani Iynkkaran, Yifeng Liu, Adam Maciejewski, Nicola Gale, Alex Wilson, Lucy Chin, Ryan Cummings, Diana Le, Allison Pon, Craig Knox, Michael Wilson. DrugBank 5.0: a major update to the drugBank database for 2018. Nucleic Acids Research, 46(D1) (2011) D1074-D1082.
DOI: 10.1093/nar/gkx1037
Google Scholar
[44]
Chun Wei Yap. PaDEL-descriptor: An open-source software to calculate molecular descriptors and fingerprints. Journal of Computational Chemistry, 32(7) (2011) 1466-1474.
DOI: 10.1002/jcc.21707
Google Scholar
[45]
Peng Zhang, Lin Tao, Xian Zeng, Chu Qin, Shangying Chen, Feng Zhu, Sheng Yong Yang, Zerong Li, Weiping Chen, Yu Zong Chen. PROFEAT update: a protein features web server with added facility to compute network descriptors for studying omics-derived networks. Journal of Molecular Biology, 423(3) (2017) 416-425.
DOI: 10.1016/j.jmb.2016.10.013
Google Scholar
[46]
Twan van Laarhoven, Elena Marchiori. Predicting drug-target interactions for new drug compounds using a weighted nearest neighbor profile. PloS one, 8(6) (2013) e66952.
DOI: 10.1371/journal.pone.0066952
Google Scholar
[47]
Feixiong Cheng, Chuang Liu, Jing Jiang, Weiqiang Lu, Weihua Li, Guixia Liu, Weixing Zhou, Jin Huang, Yun Tang. Prediction of drug-target interactions and drug repositioning via network-based inference. PLoS computational biology, 8(5) (2012) e1002503
DOI: 10.1371/journal.pcbi.1002503
Google Scholar