[1]
D. Rhithuparna, N. Ghosh, R. Khatoon, S.L. Rokhum, G. Halder, Evaluating the commercial potential of Cocos nucifera derived biochar catalyst in biodiesel synthesis from Kanuga oil: Optimization, kinetics, thermodynamics, and process cost analysis. Process Safety and Environmental Protection (2024) 183, 859-874.
DOI: 10.1016/j.psep.2024.01.030
Google Scholar
[2]
E.O. Babatunde, S. Enomah, O.M. Akwenuke, T.F. Adepoju, C.O. Okwelum, M.M. Mundu, A. Aiki, O.D. Oghenejabor, Novel-activated carbon from waste green coconut husks for the synthesis of biodiesel from pig fat oil blends with tallow seed oil. Case Studies in Chemical and Environmental Engineering 11 (2025) 101058.
DOI: 10.1016/j.cscee.2024.101058
Google Scholar
[3]
H.K. Ooi, X.N. Koh, H.C. Ong, H.V. Lee, M.S. Mastuli, Y.H. Taufiq-Yap, F.A. Alharthi, A.A. Alghamdi, N.A. Mijan, Progress on modified calcium oxide-derived waste-shell catalysts for FAME production. Catalysts 11(2) (2021) 1-26
DOI: 10.3390/catal11020194
Google Scholar
[4]
S. Saman, A. Balouch, F.N. Talpur, A.A. Memon, B.M. Mousavi, F. Verpoort, Green synthesis of MgO nanocatalyst by using Ziziphus mauritiana leaves and seeds for FAME production. Applied Organometallic Chemistry 35(5) (2021) 1-10
DOI: 10.1002/aoc.6199
Google Scholar
[5]
K. Nwosu-obieogu, J. Ezeugo, O.D. Onukwuli, C.N. Ude, Modelling and optimizing the transesterification process of shea butter via CD-BaCl-IL catalyst using soft computing algorithms. Results in Engineering 22 (2024) 102004.
DOI: 10.1016/j.rineng.2024.102004
Google Scholar
[6]
K. Nwosu-Obieogu, U.C. Nonso, O.D. Onukwuli, J.O. Ezeugo, Kinetics, modelling and optimization of Shea butter transesterification clay doped ionic liquid catalyst. South African Journal of Chemical Engineering 51(1) (2025) 232-252.
DOI: 10.1016/j.sajce.2024.12.001
Google Scholar
[7]
M. Takase, Ghanaian clay as a catalyst for transesterificating shea butter oil as alternative feedstock for green energy production. International Journal of Chemical Engineering (2022) 8805668.
DOI: 10.1155/2022/8805668
Google Scholar
[8]
T. Parangi, Heterogeneous catalysis: an alternative approach for energy and environment. Reviews in Inorganic Chemistry (2025).
Google Scholar
[9]
M. Noman, M. Farooq, A. Ramli, D. Muhammad, F. Perveen, Z.A. Ghazi, M. Irshad, Optimizing Acid Heterogeneous Catalyzed Biodiesel Production from Diverse Feedstocks: A Sustainable Approach to Renewable Energy. Chemical Engineering Research and Design (2025).
DOI: 10.1016/j.cherd.2025.07.029
Google Scholar
[10]
A. Hussain, I. Ghaffar, S. Sattar, M. Muneeb, A. Hasan, B. Deepanraj, Eco-friendly catalysts revolutionizing energy and environmental applications: An overview. Topics in Catalysis 68(5) (2025) 487-509.
DOI: 10.1007/s11244-024-01976-y
Google Scholar
[11]
H. Singh, A. Ali, Potassium and 12-tungstophosphoric acid loaded alumina as heterogeneous catalyst for the esterification as well as transesterification of waste cooking oil in a single pot. Asia-Pacific Journal of Chemical Engineering 16(1) (2021) e2585.
DOI: 10.1002/apj.2585
Google Scholar
[12]
R. Malhotra, A. Ali, 5-Na/ZnO doped mesoporous silica as reusable solid catalyst for biodiesel production via transesterification of virgin cottonseed oil. Renewable Energy 133 (2019) 606-619.
DOI: 10.1016/j.renene.2018.10.055
Google Scholar
[13]
M. Kaur, R. Malhotra, A. Ali, Tungsten supported Ti/SiO2 nanoflowers as reusable heterogeneous catalyst for biodiesel production. Renewable Energy 116 (2018) 109-119.
DOI: 10.1016/j.renene.2017.09.065
Google Scholar
[14]
C.N. Ude, O.D. Onukwuli, Kinetic modeling of transesterification of gmelina seed oil catalyzed by alkaline activated clay (NaOH/clay) catalyst. Reaction Kinetics, Mechanisms and Catalysis 127(2) (2019) 1039-1058
DOI: 10.1007/s11144-019-01604-x
Google Scholar
[15]
M.Z. Salmasi, M. Kazemeini, S. Sadjadi, Transesterification of sunflower oil to FAME fuel utilizing a novel K2CO3/Talc catalyst: Process optimizations and kinetics investigations. Industrial Crops and Products 156 (2020) 112846. https://doi.org/10.1016/j.indcrop. 2020.112846
DOI: 10.1016/j.indcrop.2020.112846
Google Scholar
[16]
A. Inayat, A.M. Nassef, H. Rezk, E.T. Sayed, M.A. Abdelkareem, A.G. Olabi, Fuzzy modeling and parameters optimization for the enhancement of FAME production from waste frying oil over montmorillonite clay K-30. Science of the Total Environment 666 (2019) 821-827
DOI: 10.1016/j.scitotenv.2019.02.321
Google Scholar
[17]
S. Jalalmanesh, M. Kazemeini, M.H. Rahmani, M.Z. Salmasi, FAME Production from Sunflower Oil Using K2CO3 Impregnated Kaolin Novel Solid Base Catalyst. Journal of the American Oil Chemists' Society 98(6) (2021) 633-642
DOI: 10.1002/aocs.12486
Google Scholar
[18]
T.H. Đặng, X.H. Nguyễn, C.L. Chou, B.H. Chen, Preparation of cancrinite-type zeolite from diatomaceous earth as transesterification catalysts for FAME production. Renewable Energy 174 (2021) 347-358.
DOI: 10.1016/j.renene.2021.04.068
Google Scholar
[19]
H. Widiyandari, O. Prilita, M.S. Al Ja'farawy, F. Nurosyid, O. Arutanti, Y. Astuti, N. Mufti, Nitrogen-doped carbon quantum dots supported zinc oxide (ZnO/N-CQD) nanoflower photocatalyst for methylene blue photodegradation. Results in Engineering 17 (2023) 100814.
DOI: 10.1016/j.rineng.2022.100814
Google Scholar
[20]
R. Naveenkumar, G. Baskar, Optimization and techno-economic analysis of FAME production from Calophyllum inophyllum oil using heterogeneous nanocatalyst. Bioresource Technology 315 (2020) 123852
DOI: 10.1016/j.biortech.2020.123852
Google Scholar
[21]
M. Kuniyil, J.V. Shanmukha Kumar, S.F. Adil, M.E. Assal, M.R. Shaik, M. Khan, A. Al-Warthan, M.R.H. Siddiqui, Production of FAME from waste cooking oil using ZnCuO/N-doped graphene nanocomposite as an efficient heterogeneous catalyst. Arabian Journal of Chemistry 14(3) (2021) 102982
DOI: 10.1016/j.arabjc.2020.102982
Google Scholar
[22]
K. Nwosu-Obieogu, U.C. Nonso, O.D. Okechukwu, J. E. Joseph, Kinetics and soft computing evaluation of Linseed oil transesterification via CD-BaCl-IL catalyst. Heliyon 10(18) (2024).
DOI: 10.1016/j.heliyon.2024.e37686
Google Scholar
[23]
A.S. Yusuff, M. Kumar, B.O. Obe, L.O. Mudashiru, Calcium Oxide Supported on Coal Fly Ash (CaO/CFA) as an Efficient Catalyst for FAME Production from Jatropha Curcas Oil. Topics in Catalysis (2021).
DOI: 10.1007/s11244-021-01478-1
Google Scholar
[24]
H. Dadhania, D. Raval, A. Dadhania, Magnetically separable heteropolyanion-based ionic liquid as a heterogeneous catalyst for ultrasound-mediated FAME production through the esterification of fatty acids. Fuel 296 (2021) 120673.
DOI: 10.1016/j.fuel.2021.120673
Google Scholar
[25]
K. Nwosu-Obieogu, U.C. Nonso, O.D. Okechukwu, J.E. Joseph, Shea butter transesterification through clay-doped BaCl and ionic catalyst; process parameter impacts and kinetic evaluation. Sustainable Chemistry One World 6 (2025) 100057.
DOI: 10.1016/j.scowo.2025.100057
Google Scholar
[26]
O.D. Onukwuli, C.N. Ude, Kinetics of African pear seed oil (APO) methanolysis catalyzed by phosphoric acid-activated kaolin clay. Applied Petrochemical Research 8(4) (2018) 299-313.
DOI: 10.1007/s13203-018-0210-0
Google Scholar
[27]
A. Kurhade, A.K. Dalai, Kinetic modeling, mechanistic, and thermodynamic studies of HPW-MAS-9 catalysed transesterification reaction for FAME synthesis. Fuel Processing Technology 196 (2019) 106164.
DOI: 10.1016/j.fuproc.2019.106164
Google Scholar
[28]
A.J. Abu, F.D. Muhammad, F.E. Awe, The effect of extraction method on fatty acid profile of traditionally and mechanically extracted shea butter samples from Nasarawa State. FUDMA Journal of Sciences 9(5) (2025) 239-243.
DOI: 10.33003/fjs-2025-0905-3629
Google Scholar
[29]
O.D. Akin-Ajani, N. Kuntworbe, O.A. Odeku, Coconut oil and shea butter as lipids for the formulation of ciprofloxacin-loaded nanoparticles. Journal of Pharmaceutical Innovation 20(1) (2025) 12.
DOI: 10.1007/s12247-025-09922-5
Google Scholar
[30]
C.N. Chou, L.C. Lin, S.C. Chien, Surface area determination of porous materials: a weighted-average BET approach. Journal of the Taiwan Institute of Chemical Engineers (2025) 106305.
DOI: 10.1016/j.jtice.2025.106305
Google Scholar
[31]
K. Nwosu-Obieogu, M.A. Allen, C. Nwogu, B. Nwankwojike, S. Bright, C. Goodnews, Luffa oil transesterification prediction via adaptive neuro-fuzzy inference system using an acid-activated waste marble catalyst. Proceedings of the Indian National Science Academy 91(1) (2025) 299-311.
DOI: 10.1007/s43538-024-00341-7
Google Scholar
[32]
M. Keihanfar, B.B.F. Mirjalili, A. Bamoniri, Bentonite/Ti(IV) as a natural based nano-catalyst for synthesis of pyrimido[2,1-b]benzothiazole under grinding condition. Scientific Reports 15(1) (2025) 6328.
DOI: 10.1038/s41598-024-80092-z
Google Scholar
[33]
A.S. Farooqi, M.Z. Shahid, M. Essalhi, M.M. Hossain, M.M. Abdelnaby, M.A. Sanhoob, M.A. Nemitallah, Performance of Ni-M/Ca12Al14O33 (M=Co, Cu and Fe) bimetallic catalysts in sorption-enhanced steam methane reforming for blue hydrogen production. Catalysis Today 454 (2025) 115281.
DOI: 10.1016/j.cattod.2025.115281
Google Scholar
[34]
A.N. Potorochenko, Y.V. Gyrdymova, K.S. Rodygin, Waste-derived catalyst for biodiesel manufacturing in CO2-free manner: Preparation, catalytic activity, and reuse studies. ChemCatChem 17(5) (2025) e202401607.
DOI: 10.1002/cctc.202401607
Google Scholar
[35]
S. Akbar, M.N. Qureshi, S.A. Khan, Fabrication of chitosan supported copper nanocatalyst for the hydrogen gas production through methanolysis and hydrolysis of NaBH4. International Journal of Hydrogen Energy 101 (2025) 313-322.
DOI: 10.1016/j.ijhydene.2024.12.462
Google Scholar
[36]
F. Bo, K. Wang, J. Liang, T. Zhao, J. Wang, Y. He, X. Gao, Recent advances in the application of in situ X-ray diffraction techniques to characterize phase transitions in Fischer–Tropsch synthesis catalysts. Green Carbon 3(1) (2025) 22-35.
DOI: 10.1016/j.greenca.2024.09.009
Google Scholar
[37]
S. Badoga, A. Alvarez-Majmutov, M. Shakouri, J. Chen, Catalyst synthesis, characterization, and testing for low-temperature hydrotreating of pyrolysis bio-oil. Catalysis Today (2025) 115488.
DOI: 10.1016/j.cattod.2025.115488
Google Scholar
[38]
E.O. Ajala, F. Aberuagba, A.M. Olaniyan, K.R. Onifade, Optimization of solvent extraction of shea butter (Vitellaria paradoxa) using response surface methodology and its characterization. Journal of Food Science and Technology 53(1) (2016) 730-738.
DOI: 10.1007/s13197-015-2033-7
Google Scholar
[39]
F.P.M. da Silva Ferreira, G. Simonelli, L.C.L. dos Santos, Biodiesel production via transesterification: a review on process intensification with ultrasound and surfactants. Revista de Gestão e Secretariado 16(2) (2025) e4631.
DOI: 10.7769/gesec.v16i2.4631
Google Scholar
[40]
S. Veluturla, S. Ravi, Process intensification strategies for the production of biodiesel-A review. ChemBioEng Reviews (2025) e70004.
DOI: 10.1002/cben.70004
Google Scholar
[41]
D.D. Alcalá-Galiano-Morell, L.B. Ramos-Sánchez, P. Fickers, E. Romero-Borbón, N.D. Ortega-de la Rosa, J. Córdova, A multi reaction kinetic model to describe the enzymatic transesterification reaction of jatropha oil using a fermented solid containing lipases. Carbon Resources Conversion 8(3) (2025) 100272.
DOI: 10.1016/j.crcon.2024.100272
Google Scholar
[42]
A.K. Ayoob, A.B. Fadhil, Valorization of waste tires in the synthesis of an effective carbon-based catalyst for FAME production from a mixture of non-edible oils. Fuel 264 (2020) 116754.
DOI: 10.1016/j.fuel.2019.116754
Google Scholar
[43]
S. Zhao, S. Niu, H. Yu, Y. Ning, X. Zhang, L. Xi, Y. Zhang, C. Lu, K. Han, Experimental investigation on FAME production through transesterification promoted by the La-dolomite catalyst. Fuel 257 (2019) 116092.
DOI: 10.1016/j.fuel.2019.116092
Google Scholar
[44]
B. Changmai, R. Rano, C. Vanlalveni, S.L. Rokhum, A novel Citrus sinensis peel ash coated magnetic nanoparticles as an easily recoverable solid catalyst for biodiesel production. Fuel 286 (2021) 119447.
DOI: 10.1016/j.fuel.2020.119447
Google Scholar
[45]
S. Joseph, F.B. Abifarin, W.W. Jikisim, B.N. Jibrillu, J.K. Abifarin, Sustainable synthesis of shea butter-derived bio-lubricants: a green alternative to mineral oils. Next Sustainability 5 (2025) 100128.
DOI: 10.1016/j.nxsust.2025.100128
Google Scholar