Development of Water Atomization System for the Production of Aluminium Powder from End-of-Life Aluminium Metal in Nigeria

Article Preview

Abstract:

This paper reports the complete setup of water atomisation machine designed to manufacture aluminium powder out of discarded aluminium metal in Nigeria. It is a study that evaluates the country’s dependence on imported aluminum powder and the economic effect its has on the country. The specially designed atomizers with high-pressure water supply, atomising nozzles, and tanks turn discarded aluminum scrap into powder in 45 seconds. The studies consist of iterative design optimization and parameter tuning, 82% conversion and aluminium powder manufactured with desired properties.Finite element analysis (FEA) checks the structure for integrity at high pressures; and computational fluid dynamics (CFD) analysis explains thermal dynamics. The results are positive for the domestic aluminum market as it offers a long-term and affordable alternative for aluminum powder production.

You might also be interested in these eBooks

Info:

Pages:

25-49

Citation:

Online since:

December 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.M. Fevrier, Race and waste: The politics of electronic waste recycling & scrap metal recovery in Agbogbloshie, Accra, Ghana, J. Environ. Stud. 15 (2020) 45–62.

Google Scholar

[2] P. Schuck, I.J. van Rooyen, G. Griffith, K. Mondal, Adv. Powder Metall. 5 (2022) 112–125.

Google Scholar

[3] K. Kassym, A. Perveen, Atomization processes of metal powders for 3D printing, Mater. Today Proc. 26 (2020) 1727–1733.

DOI: 10.1016/j.matpr.2020.02.364

Google Scholar

[4] Y. Tawichart, Y. Suchart, Design and construction of water atomizer for making metal powders, J. Powder Technol. 8 (2011) 34–45.

Google Scholar

[5] G.P. de León, V.E. Lamberti, R.D. Seals, T.M. Abu-Lebdeh, S.A. Hamoush, Gas atomization of molten metal: Part I. Numerical modeling conception, Am. J. Eng. Appl. Sci. 9 (2016) 303–322.

DOI: 10.3844/AJEASSP.2016.303.322

Google Scholar

[6] E. Urionabarrenetxea, J.M. Martín, A. Avello, A. Rivas, Simulation and validation of the gas flow in close-coupled gas atomisation process: Influence of the inlet gas pressure and the throat width of the supersonic gas nozzle, Powder Technol. 407 (2022) 117688.

DOI: 10.1016/J.POWTEC.2022.117688

Google Scholar

[7] P. Moghimian, T. Poirié, M. Habibnejad-Korayem, J.A. Zavala, J. Kroeger, F. Marion, F. Larouche, Metal powders in additive manufacturing: A review on reusability and recyclability of common titanium, nickel and aluminum alloys, Addit. Manuf. 43 (2021) 102017.

DOI: 10.1016/J.ADDMA.2021.102017

Google Scholar

[8] S. Park, K. Park, Principles and droplet size distributions of various spraying methods: A review, J. Mech. Sci. Technol. 36 (2022) 4033–4041.

DOI: 10.1007/s12206-022-0724-3

Google Scholar

[9] D. Beckers, N. Ellendt, U. Fritsching, V. Uhlenwinkel, Impact of process flow conditions on particle morphology in metal powder production via gas atomization, Adv. Powder Technol. 31 (2020) 300–311.

DOI: 10.1016/J.APT.2019.10.022

Google Scholar

[10] K. Hariramabadran Anantha, Study of total oxygen content and oxide composition formed during water atomization of steel powders due to manganese variation, Int. J. Powder Metall. 48 (2012) 55–68.

Google Scholar

[11] P. Royo, V.J. Ferreira, A.M. López-Sabirón, T. García-Armingol, G. Ferreira, Retrofitting strategies for improving the energy and environmental efficiency in industrial furnaces: A case study in the aluminium sector, Renew. Sustain. Energy Rev. 82 (2018) 1813–1822.

DOI: 10.1016/j.rser.2017.06.113

Google Scholar

[12] Li, H. Chen, H. Zhu, M. Wang, C. Chen, T. Yuan, Effect of aging treatment on the microstructure and mechanical properties of Al-3.02Mg-0.2Sc-0.1Zr alloy printed by selective laser melting, Mater. Des. 168 (2019) 107668.

DOI: 10.1016/J.MATDES.2019.107668

Google Scholar

[13] T. Jakobs, N. Djordjevic, S. Fleck, M. Mancini, R. Weber, T. Kolb, Gasification of high viscous slurry R&D on atomization and numerical simulation, Appl. Energy 93 (2012) 449–456.

DOI: 10.1016/J.APENERGY.2011.12.026

Google Scholar

[14] M.A. Ryder, C.J. Montgomery, M.J. Brand, J.S. Carpenter, P.E. Jones, A.G. Spangenberger, D.A. Lados, Melt Pool and Heat Treatment Optimization for the Fabrication of High-Strength and High-Toughness Additively Manufactured 4340 Steel, J. Mater. Eng. Perform. 30 (2021) 5426–5440.

DOI: 10.1007/S11665-021-05836-8

Google Scholar

[15] G.M. Kanaginahal, M.C. Kiran, K. Shahapurkar, R.S. Mahale, P. Kakkamari, Automobile Applications of Mechanically Alloyed Magnesium and Titanium Material, in: Mechanically Alloyed Novel Materials: Processing, Applications, and Properties, Springer, Singapore, 2024, p.379–406.

DOI: 10.1007/978-981-97-6504-1_16

Google Scholar

[16] T.D.T. Oyedotun, X-ray fluorescence (XRF) in the investigation of the composition of earth materials: a review and an overview, Geomech. Geophys. Geo-Energy Geo-Resour. 4 (2018) 211–230.

DOI: 10.1080/24749508.2018.1452459

Google Scholar

[17] A. Lefebvre, V. McDonell, Atomization and Sprays, CRC Press, Boca Raton, 2017.

Google Scholar

[18] G. Matsagopane, E.O. Olakanmi, A. Botes, S. Kutua, Conceptual design framework for setting up aluminum alloy powder production system for Selective Laser Melting (SLM) process, JOM 71 (2019) 1840–1857.

DOI: 10.1007/s11837-019-03431-w

Google Scholar

[19] S.J. Niranjana, S.V. Patel, A.K. Dubey, Design and Analysis of Vertical Pressure Vessel using ASME Code and FEA Technique, IOP Conf. Ser.: Mater. Sci. Eng. 376 (2018) 012034.

DOI: 10.1088/1757-899x/376/1/012135

Google Scholar

[20] G.S. Upadhyaya, Powder Metallurgy Technology, Cambridge Int. Sci. Publ., Cambridge, 1997.

Google Scholar

[21] C. Nagesh, N.K. Gupta, Structural response validation of composite cylindrical pressure vessels using FEA, Mater. Today Proc. (2023).

DOI: 10.1016/J.MATPR.2022.12.248

Google Scholar

[22] A. Mohammadzadeh, S.M. Haidar, Thermo-Mechanical Stresses in the Design and Analysis of Thick-Walled Pressure Vessels, in: ASME International Mechanical Engineering Congress and Exposition, Vol. 85659, ASME, 2021, p. V009T09A030.

DOI: 10.1115/imece2021-66582

Google Scholar

[23] G. Matsagopane, Design of a gas atomising system capable of producing suitable aluminium powder for Selective Laser Melting (SLM) process, Master's Thesis, Botswana International University of Science & Technology, 2020.

Google Scholar

[24] S. Mandal, A. Sadeghianjahromi, C.C. Wang, Experimental and numerical investigations on molten metal atomization techniques–A critical review, Adv. Powder Technol. 33 (2022) 103809.

DOI: 10.1016/j.apt.2022.103809

Google Scholar

[25] M. Zhang, Z. Zhang, Q. Liu, Research advances in close-coupled atomizer flow and atomizing mechanisms, Powder Metall. Met. Ceram. 62 (2023) 400–426.

DOI: 10.1007/s11106-024-00403-x

Google Scholar

[26] U. Ulusoy, A review of particle shape effects on material properties for various engineering applications: from macro to nanoscale, Minerals 13 (2023) 91.

DOI: 10.3390/min13010091

Google Scholar

[27] D.R. Moss, Pressure Vessel Design Manual, Elsevier, 2004.

Google Scholar

[28] D. Qadir, R. Sharif, R. Nasir, A. Awad, H.A. Mannan, A review on coatings through thermal spraying, Chem. Pap. 78 (2024) 71–91.

DOI: 10.1007/s11696-023-03089-4

Google Scholar

[29] Q. Jin, Y. Yu, J. Zhang, Numerical and experimental study on intermittent spray cooling for plate-fin heat exchanger, Appl. Therm. Eng. 234 (2023) 121328.

DOI: 10.1016/j.applthermaleng.2023.121328

Google Scholar

[30] S.F. Nabavi, A. Farshidianfar, H. Dalir, Comprehensive review: Advancements in modeling geometrical and mechanical characteristics of laser powder bed fusion process, Opt. Laser Technol. 180 (2025) 111480.

DOI: 10.1016/j.optlastec.2024.111480

Google Scholar

[31] D. M. Goudar, V. C. Srivastava & G. B. Rudrakshi, Effect of atomization parameters on size and morphology of Al-17Si alloy powder produced by free fall atomizer. Eng. J., 21(2017) 155-168.

DOI: 10.4186/ej.2017.21.1.155

Google Scholar

[32] L. Kong, W. Lei, Q. Wei, J. Han, Z. Suorong, Q. Li, Z. Liu, Experimental investigations into the performance of die-sinking mixed-gas atomization discharge ablation process on titanium alloy, Sci. Rep. 12 (1) (2022) 2399.

DOI: 10.1038/s41598-022-06457-4

Google Scholar

[33] S.Y. Manegin, S.D. Rozanov, I.A. Gulyaev, A.V. Mezhevov, P.O. Zhukov, Oxidation process of high-alloy steel powders during melt atomization with water, Metallurgist 66 (1-2) (2022) 61–70.

DOI: 10.1007/s11015-022-01300-7

Google Scholar

[34] Y. Zedan, A.M. Samuel, H.W. Doty, V. Songmene, F.H. Samuel, Effects of free-cutting elements addition on the microstructure, hardness, and machinability of Al-11% Si–Cu–Mg casting alloys, Int. J. Metalcast. 16 (4) (2022) 1915–1931.

DOI: 10.1007/s40962-021-00740-2

Google Scholar

[35] G. Peinado, C. Carvalho, A. Jardini, E. Souza, J.A. Avila, C. Baptista, Microstructural and mechanical characterization of additively manufactured parts of maraging 18Ni300M steel with water and gas atomized powders feedstock, (2023).

DOI: 10.1007/s00170-023-12686-2

Google Scholar

[36] P. Schuck, I.J. van Rooyen, G. Griffith, K. Mondal, Advances in powder metallurgy: Design of efficient atomization systems, Adv. Powder Metall. 5 (2022) 112–125.

Google Scholar

[37] Y. Tawichart, Y. Suchart, Design and construction of water atomizer for making metal powders, J. Powder Technol. 8 (2011) 34–45.

Google Scholar

[38] D. Beckers, N. Ellendt, U. Fritsching, V. Uhlenwinkel, Impact of process flow conditions on particle morphology in metal powder production via gas atomization, Adv. Powder Technol. 31 (2020) 300–311.

DOI: 10.1016/j.apt.2019.10.022

Google Scholar