Influence of Minor Coarse Aggregate Fractions on Hardfill Strength: A Case Study of Mallegue-Amont Dam

Article Preview

Abstract:

This study examines the influence of low proportions (<2.5%by mass) of 40/63 mm gravel on the shear strength of hardfill used in the Mallegue-Amont Dam (Tunisia). To address the coarse nature of the material, a custom medium-scale direct shear apparatus was developed, despite its non-standard dimensions. Nine mixtures with varying sand-to-gravel ratios were prepared to evaluate the effect of fine content. Experimental testing was supported by statistical analysis and validated through numerical simulations using FLAC3D. Results indicate that the 40/63 mm fraction has a negligible effect on shear strength parameters. Instead, the mechanical response is predominantly controlled by cementation and particles smaller than 40 mm. Numerical modeling confirmed the reliability of the experimental findings and reinforced the validity of the adapted testing approach. The study demonstrates that representative shear strength parameters can be obtained using non-standard equipment, provided mixture preparation and mold dimensions are carefully controlled. These insights contribute to cost-effective hardfill design and improved durability of dam and infrastructure projects.

You might also be interested in these eBooks

Info:

Pages:

107-134

Citation:

Online since:

December 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. I. Abu-Khashaba, I. Adam, A. El-Ashaal, Investigating the possibility of constructing low cost roller compacted concrete dam, Alexandria Engineering Journal 53(1) (2014) 131-142.

DOI: 10.1016/j.aej.2013.11.009

Google Scholar

[2] B. Seif El Dine, Étude du comportement mécanique de sols grossiers à matrice, Ph.D. thesis, Ecole des Ponts ParisTech, Paris, France, 2007.

Google Scholar

[3] A. Deiminiat, L. Li, F. Zeng, T. Pabst, P. Chiasson, R. Chapuis, Determination of the Shear Strength of Rockfill from Small-Scale Laboratory Shear Tests: A Critical Review, Advances in Civil Engineering 2020 (2020) 8890237.

DOI: 10.1155/2020/8890237

Google Scholar

[4] N. Ali-Hassan, N.-S. Nguyen, D. Marot, F. Bendahmane, Effect of scalping on the mechanical behavior of coarse soils, International Journal of Geotechnical and Geological Engineering 15(1) (2021) 64-74.

Google Scholar

[5] Y. Zhao, Z. Lu, J. Liu, H. Yao, Numerical Study on Shear Behavior of Geocell-reinforced Layer Based on Large-scale Direct Shear Tests, KSCE Journal of Civil Engineering 28(7) (2024) 2613- 2624.

DOI: 10.1007/s12205-024-2458-5

Google Scholar

[6] N. Kouakou, Comportement mécanique des sols grossiers hétérogènes à matrice, Ph.D. thesis, Université de Lorraine, 2020.[7] ASTM International, ASTM C192/C192M-19: Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory, ASTM International, 2019.

Google Scholar

[8] CEN, EN 12390-1:2021 - Testing hardened concrete - Part 1: Shape, dimensions and other requirements for specimens and moulds, CEN, 2021.

DOI: 10.3403/30254400

Google Scholar

[9] D. Zekkos, G. A. Athanasopoulos, J. D. Bray, A. Grizi, A. Theodoratos, Large-scale direct shear testing of municipal solid waste, Waste Management 30(8) (2010) 1544-1555.

DOI: 10.1016/j.wasman.2010.01.024

Google Scholar

[10] M. Ebadi-Jamkhaneh, A. Homaioon-Ebrahimi, D.-P. N. Kontoni, Numerical finite element study of strengthening of damaged reinforced concrete members with carbon and glass FRP wraps, Computers and Concrete 28(2) (2021) 137-147.

Google Scholar

[11] A. Gharibdoust, A. Aldemir, B. Binici, Seismic behaviour of roller compacted concrete dams under different base treatments, Structure and Infrastructure Engineering 16(2) (2020) 355-366.

DOI: 10.1080/15732479.2019.1661500

Google Scholar

[12] S. Sarlati, Évaluation de la résistance au cisaillement des sols granulaires non-saturés, Master's thesis, Université de Sherbrooke, Sherbrooke (Québec), Canada, 2019.

DOI: 10.17925/usrpd.2022.7.2.44

Google Scholar

[13] P. McLaren, D. Bowles, The effects of sediment transport on grain-size distributions, Journal of Sedimentary Research 55(4) (1985) 457-470.

DOI: 10.1306/212f86fc-2b24-11d7-8648000102c1865d

Google Scholar

[14] AFNOR, NF EN 197-1:2001 - Cements - Part 1: Composition, specifications and conformity criteria for common cements, AFNOR, 2001.

DOI: 10.3403/00907885

Google Scholar

[15] EN196-1, NF EN 196-1:1995 - Methods of testing cement - Part 1: Determination of strength, AFNOR, 1995.

Google Scholar

[16] AFNOR, NF EN 12620+A1:2008 - Aggregates for concrete, mortar and asphalt - Definitions, specifications and conformities, AFNOR, 2008.

Google Scholar

[17] H. M. O'Neil, Direct-shear test for effective-strength parameters, Journal of the Soil Mechanics and Foundations Division 88(4) (1962) 109-137.

DOI: 10.1061/jsfeaq.0000433

Google Scholar

[18] F. Wu, X. Zhang, Z. Zhang, Study on Shear Fracture Characteristics of Coarse Grained Soil Based on DEM-FDM, in: CICTP 2020, 2020, pp.1840-1847.

DOI: 10.1061/9780784482933.158

Google Scholar

[19] X. F. Gu, J. P. Seidel, C. M. Haberfield, Direct shear test of sandstone-concrete joints, International journal of geomechanics 3(1) (2003) 21-33.

DOI: 10.1061/(asce)1532-3641(2003)3:1(21)

Google Scholar

[20] M. M. Kharanaghi, J.-L. Briaud, Large-scale direct shear test on railroad ballast, in: GeoCongress 2020, American Society of Civil Engineers Reston, VA, 2020, pp.123-131.

DOI: 10.1061/9780784482803.014

Google Scholar

[21] J. Yang, Y. Xia, W. Chen, L. Zhang, L. Li, Shear behavior of silty clay-concrete interface based on large-scale direct shear test, International Journal of Geomechanics 23(7) (2023) 04023084.

DOI: 10.1061/ijgnai.gmeng-8285

Google Scholar

[22] H. Liu, G. Yang, Y. Guo, Q. Zhang, Z. Sun, Experimental study on the shear deformation characteristics and mechanical properties of bolted joints, International Journal of Geomechanics 23(1) (2023) 04022265.

DOI: 10.1061/(asce)gm.1943-5622.0002641

Google Scholar

[23] Z. Yang, S. Li, Y. Jiang, Y. Hu, X. Liu, Shear mechanical properties of the interphase between soil-rock mixtures and benched bedrock slope surfaces, International Journal of Geomechanics 22(5) (2022) 04022047.[24] A. Bernard, L. Peyras, P. Royet, L'essai de cisaillement à la grande boîte de Casagrande : Un banc expérimental pour évaluer les propriétés des sols grossiers et pour d'autres applications en géomécanique, Revue Française de Géotechnique 146(4) (2016) 21.

DOI: 10.1051/geotech/2016004

Google Scholar

[25] J. Yang, X. Cai, Q. Pang, X.-w. Guo, Y.-l. Wu, J.-l. Zhao, Experimental study on the shear strength of cement-sand-gravel material, Advances in Materials Science and Engineering 2018 (2018) 2531642.

DOI: 10.1155/2018/2531642

Google Scholar

[26] M. Xiao, M. Ledezma, C. Hartman, Large-Scale Shear Testing of Tire-Derived Aggregates (TDA), in: Geo-Congress 2014: Geo-characterization and Modeling for Sustainability, ASCE Library, 2014, pp.3744-3753.

DOI: 10.1061/9780784413272.363

Google Scholar

[27] K. P. Burnham, D. R. Anderson, Model Selection and Multimodel Inference: A Practical Information-Theoretical Approach, 2nd Edition, Springer-Verlag, New York, 2002.

Google Scholar

[28] Zhao, Mingzhi, Liu, Gang, Deng, Longxiang, Li, Yangang, Optimizing the Compaction Characteristics and Strength Properties of Gravelly Soils in terms of Fine Contents, Advances in Materials Science and Engineering, 2021, 6634237, 18 pages, 2021

DOI: 10.1155/2021/6634237

Google Scholar

[29] Hatipoglu, M., Cetin, B., & Aydilek, A. H. (2020). Effects of Fines Content on Hydraulic and Mechanical Performance of Unbound Granular Base Aggregates. Journal of Transportation Engineering, Part B: Pavements, 146(1), 04019036

DOI: 10.1061/JPEODX.0000141

Google Scholar

[30] Zheng, S.; Chen, J.; Wang, W. Effects of Fines Content on Durability of High-Strength Manufactured Sand Concrete. Materials 2023, 16, 522

DOI: 10.3390/ma16020522

Google Scholar

[31] H.-m. Wu, Y.-m. Shu, J.-g. Zhu, Implementation and verification of interface constitutive model in FLAC3D, Water Science and Engineering 4(3) (2011) 305-316.

Google Scholar

[32] H. Lin, P. Cao, Y. Zhou, Numerical Simulation for Direct Shear Test of Joint in Rock Mass, International Journal of Image, Graphics and Signal Processing (IJIGSP) 2(1) (2010) 39-45.

DOI: 10.5815/ijigsp.2010.01.05

Google Scholar

[33] P. Tiwari, H. Sahin, O. F. Usluogullari, Analysis of Controlling Parameters for Shear Behavior of Rock Joints with FLAC3D, International Journal of Structural and Civil Engineering Research 5(1) (2016) 62-66.

DOI: 10.18178/ijscer.5.1.62-66

Google Scholar

[34] H. Wu, Modelling of Non-linear Shear Displacement Behaviour of Soil-Geotextile Interface, International Journal of Geosynthetics and Ground Engineering 1(2) (2015) 1-10.

DOI: 10.1007/s40891-015-0021-7

Google Scholar

[35] M. Ji, J. Wang, Y. Zheng, Numerical Study of Shear Behavior of a Geosynthetic Encased Stone Column Under Direct Shear Loading, in: Geosynthetics: Leading the Way to a Resilient Planet, CRC Press, 2023, Ch. 8, p.6.

DOI: 10.1201/9781003386889-135

Google Scholar

[36] M. Labed, N. Allout, A. Mabrouki, Numerical investigation of granular column-improved soils using the direct shear test, STUDIES IN ENGINEERING AND EXACT SCIENCES 5(1) (2024) 1078-1092.

DOI: 10.54021/seesv5n1-056

Google Scholar

[37] W. Frikha, B. Jellali, Numerical and Experimental Studies of Sand-Clay Interface, in: M. Bouassida, M. A. Meguid (Eds.), Ground Improvement and Earth Structures, Springer International Publishing, Cham, 2018, pp.108-120.

DOI: 10.1007/978-3-319-63889-8_9

Google Scholar

[38] R. Ziaie Moayed, S. Tamassoki, E. Izadi, Numerical modeling of direct shear tests on sandy clay, World Academy of Science, Engineering and Technology 61 (2012) 1093-1097.

Google Scholar