[1]
M. I. Abu-Khashaba, I. Adam, A. El-Ashaal, Investigating the possibility of constructing low cost roller compacted concrete dam, Alexandria Engineering Journal 53(1) (2014) 131-142.
DOI: 10.1016/j.aej.2013.11.009
Google Scholar
[2]
B. Seif El Dine, Étude du comportement mécanique de sols grossiers à matrice, Ph.D. thesis, Ecole des Ponts ParisTech, Paris, France, 2007.
Google Scholar
[3]
A. Deiminiat, L. Li, F. Zeng, T. Pabst, P. Chiasson, R. Chapuis, Determination of the Shear Strength of Rockfill from Small-Scale Laboratory Shear Tests: A Critical Review, Advances in Civil Engineering 2020 (2020) 8890237.
DOI: 10.1155/2020/8890237
Google Scholar
[4]
N. Ali-Hassan, N.-S. Nguyen, D. Marot, F. Bendahmane, Effect of scalping on the mechanical behavior of coarse soils, International Journal of Geotechnical and Geological Engineering 15(1) (2021) 64-74.
Google Scholar
[5]
Y. Zhao, Z. Lu, J. Liu, H. Yao, Numerical Study on Shear Behavior of Geocell-reinforced Layer Based on Large-scale Direct Shear Tests, KSCE Journal of Civil Engineering 28(7) (2024) 2613- 2624.
DOI: 10.1007/s12205-024-2458-5
Google Scholar
[6]
N. Kouakou, Comportement mécanique des sols grossiers hétérogènes à matrice, Ph.D. thesis, Université de Lorraine, 2020.[7] ASTM International, ASTM C192/C192M-19: Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory, ASTM International, 2019.
Google Scholar
[8]
CEN, EN 12390-1:2021 - Testing hardened concrete - Part 1: Shape, dimensions and other requirements for specimens and moulds, CEN, 2021.
DOI: 10.3403/30254400
Google Scholar
[9]
D. Zekkos, G. A. Athanasopoulos, J. D. Bray, A. Grizi, A. Theodoratos, Large-scale direct shear testing of municipal solid waste, Waste Management 30(8) (2010) 1544-1555.
DOI: 10.1016/j.wasman.2010.01.024
Google Scholar
[10]
M. Ebadi-Jamkhaneh, A. Homaioon-Ebrahimi, D.-P. N. Kontoni, Numerical finite element study of strengthening of damaged reinforced concrete members with carbon and glass FRP wraps, Computers and Concrete 28(2) (2021) 137-147.
Google Scholar
[11]
A. Gharibdoust, A. Aldemir, B. Binici, Seismic behaviour of roller compacted concrete dams under different base treatments, Structure and Infrastructure Engineering 16(2) (2020) 355-366.
DOI: 10.1080/15732479.2019.1661500
Google Scholar
[12]
S. Sarlati, Évaluation de la résistance au cisaillement des sols granulaires non-saturés, Master's thesis, Université de Sherbrooke, Sherbrooke (Québec), Canada, 2019.
DOI: 10.17925/usrpd.2022.7.2.44
Google Scholar
[13]
P. McLaren, D. Bowles, The effects of sediment transport on grain-size distributions, Journal of Sedimentary Research 55(4) (1985) 457-470.
DOI: 10.1306/212f86fc-2b24-11d7-8648000102c1865d
Google Scholar
[14]
AFNOR, NF EN 197-1:2001 - Cements - Part 1: Composition, specifications and conformity criteria for common cements, AFNOR, 2001.
DOI: 10.3403/00907885
Google Scholar
[15]
EN196-1, NF EN 196-1:1995 - Methods of testing cement - Part 1: Determination of strength, AFNOR, 1995.
Google Scholar
[16]
AFNOR, NF EN 12620+A1:2008 - Aggregates for concrete, mortar and asphalt - Definitions, specifications and conformities, AFNOR, 2008.
Google Scholar
[17]
H. M. O'Neil, Direct-shear test for effective-strength parameters, Journal of the Soil Mechanics and Foundations Division 88(4) (1962) 109-137.
DOI: 10.1061/jsfeaq.0000433
Google Scholar
[18]
F. Wu, X. Zhang, Z. Zhang, Study on Shear Fracture Characteristics of Coarse Grained Soil Based on DEM-FDM, in: CICTP 2020, 2020, pp.1840-1847.
DOI: 10.1061/9780784482933.158
Google Scholar
[19]
X. F. Gu, J. P. Seidel, C. M. Haberfield, Direct shear test of sandstone-concrete joints, International journal of geomechanics 3(1) (2003) 21-33.
DOI: 10.1061/(asce)1532-3641(2003)3:1(21)
Google Scholar
[20]
M. M. Kharanaghi, J.-L. Briaud, Large-scale direct shear test on railroad ballast, in: GeoCongress 2020, American Society of Civil Engineers Reston, VA, 2020, pp.123-131.
DOI: 10.1061/9780784482803.014
Google Scholar
[21]
J. Yang, Y. Xia, W. Chen, L. Zhang, L. Li, Shear behavior of silty clay-concrete interface based on large-scale direct shear test, International Journal of Geomechanics 23(7) (2023) 04023084.
DOI: 10.1061/ijgnai.gmeng-8285
Google Scholar
[22]
H. Liu, G. Yang, Y. Guo, Q. Zhang, Z. Sun, Experimental study on the shear deformation characteristics and mechanical properties of bolted joints, International Journal of Geomechanics 23(1) (2023) 04022265.
DOI: 10.1061/(asce)gm.1943-5622.0002641
Google Scholar
[23]
Z. Yang, S. Li, Y. Jiang, Y. Hu, X. Liu, Shear mechanical properties of the interphase between soil-rock mixtures and benched bedrock slope surfaces, International Journal of Geomechanics 22(5) (2022) 04022047.[24] A. Bernard, L. Peyras, P. Royet, L'essai de cisaillement à la grande boîte de Casagrande : Un banc expérimental pour évaluer les propriétés des sols grossiers et pour d'autres applications en géomécanique, Revue Française de Géotechnique 146(4) (2016) 21.
DOI: 10.1051/geotech/2016004
Google Scholar
[25]
J. Yang, X. Cai, Q. Pang, X.-w. Guo, Y.-l. Wu, J.-l. Zhao, Experimental study on the shear strength of cement-sand-gravel material, Advances in Materials Science and Engineering 2018 (2018) 2531642.
DOI: 10.1155/2018/2531642
Google Scholar
[26]
M. Xiao, M. Ledezma, C. Hartman, Large-Scale Shear Testing of Tire-Derived Aggregates (TDA), in: Geo-Congress 2014: Geo-characterization and Modeling for Sustainability, ASCE Library, 2014, pp.3744-3753.
DOI: 10.1061/9780784413272.363
Google Scholar
[27]
K. P. Burnham, D. R. Anderson, Model Selection and Multimodel Inference: A Practical Information-Theoretical Approach, 2nd Edition, Springer-Verlag, New York, 2002.
Google Scholar
[28]
Zhao, Mingzhi, Liu, Gang, Deng, Longxiang, Li, Yangang, Optimizing the Compaction Characteristics and Strength Properties of Gravelly Soils in terms of Fine Contents, Advances in Materials Science and Engineering, 2021, 6634237, 18 pages, 2021
DOI: 10.1155/2021/6634237
Google Scholar
[29]
Hatipoglu, M., Cetin, B., & Aydilek, A. H. (2020). Effects of Fines Content on Hydraulic and Mechanical Performance of Unbound Granular Base Aggregates. Journal of Transportation Engineering, Part B: Pavements, 146(1), 04019036
DOI: 10.1061/JPEODX.0000141
Google Scholar
[30]
Zheng, S.; Chen, J.; Wang, W. Effects of Fines Content on Durability of High-Strength Manufactured Sand Concrete. Materials 2023, 16, 522
DOI: 10.3390/ma16020522
Google Scholar
[31]
H.-m. Wu, Y.-m. Shu, J.-g. Zhu, Implementation and verification of interface constitutive model in FLAC3D, Water Science and Engineering 4(3) (2011) 305-316.
Google Scholar
[32]
H. Lin, P. Cao, Y. Zhou, Numerical Simulation for Direct Shear Test of Joint in Rock Mass, International Journal of Image, Graphics and Signal Processing (IJIGSP) 2(1) (2010) 39-45.
DOI: 10.5815/ijigsp.2010.01.05
Google Scholar
[33]
P. Tiwari, H. Sahin, O. F. Usluogullari, Analysis of Controlling Parameters for Shear Behavior of Rock Joints with FLAC3D, International Journal of Structural and Civil Engineering Research 5(1) (2016) 62-66.
DOI: 10.18178/ijscer.5.1.62-66
Google Scholar
[34]
H. Wu, Modelling of Non-linear Shear Displacement Behaviour of Soil-Geotextile Interface, International Journal of Geosynthetics and Ground Engineering 1(2) (2015) 1-10.
DOI: 10.1007/s40891-015-0021-7
Google Scholar
[35]
M. Ji, J. Wang, Y. Zheng, Numerical Study of Shear Behavior of a Geosynthetic Encased Stone Column Under Direct Shear Loading, in: Geosynthetics: Leading the Way to a Resilient Planet, CRC Press, 2023, Ch. 8, p.6.
DOI: 10.1201/9781003386889-135
Google Scholar
[36]
M. Labed, N. Allout, A. Mabrouki, Numerical investigation of granular column-improved soils using the direct shear test, STUDIES IN ENGINEERING AND EXACT SCIENCES 5(1) (2024) 1078-1092.
DOI: 10.54021/seesv5n1-056
Google Scholar
[37]
W. Frikha, B. Jellali, Numerical and Experimental Studies of Sand-Clay Interface, in: M. Bouassida, M. A. Meguid (Eds.), Ground Improvement and Earth Structures, Springer International Publishing, Cham, 2018, pp.108-120.
DOI: 10.1007/978-3-319-63889-8_9
Google Scholar
[38]
R. Ziaie Moayed, S. Tamassoki, E. Izadi, Numerical modeling of direct shear tests on sandy clay, World Academy of Science, Engineering and Technology 61 (2012) 1093-1097.
Google Scholar