Monitoring and Assessment of Seasonal Variation of Water Quality Using a Multi-Band Cloud Based Application in Coastal Environment

Article Preview

Abstract:

Continuous water quality monitoring remains a potential concern because of its connection to human wellbeing and aquatic ecosystem. This study examines seasonal variation of TSS concentration in Lagos Lagoon surface water. The Lagoon is located in South-west coastal region in Nigeria known to be extremely contaminated because of its vulnerable location, increasing human activities and infestation from nearby creeks. The investigation utilized Landsat 8-9 multispectral spatial bands (OLI & TIR) while band combination indices, such as WRI (Water Ratio Index) and NSMI, (Normalized Sediment Material Index) that used blue, red, green, NIR and SWIR Band was utilized respectively. Automated Water Extraction Index (AWEI) was employed for further confirmation of sediment concentration. Linear and nonlinear regression testing was used to analyse the correlation between the remotely sensed data and the in-suit data. Result revealed modest undesirable correlation between the employed indices and the real time in suit data reflecting non alignment relationship. Nonlinear equation testing reported highest = (0.42) which is slightly stronger than the linear case with highest (0.27). The dry season equally reports considerably more total suspended solids and turbid particles than the wet season. The final outcome effectively proved the capability of Landsat improved sensor bands in retrieving TSS in Lagoon surface water.

You might also be interested in these eBooks

Info:

Pages:

181-198

Citation:

Online since:

December 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Adedayo, D. Adeyemi, J.P. Uyimandu, S. Chigome, C. Anyakora, Evaluation of the levels of polycyclic aromatic hydrocarbons in surface and bottom waters of lagos lagoon, Nigeria." African. Journal of Pharmaceutical Sciences and Pharmacy, 3 (1). (2012)

Google Scholar

[2] P.O. Oyeleke, O.P. Samuel, A.A. Olushola, Assessment of Some Physico-Chemical Parameters of Lagos Lagoon, Southwestern Nigeria. Academic Journal of Chemistry, 4 (3) (2019) 9-11.

DOI: 10.32861/ajc.43.09.11

Google Scholar

[3] A.A. Adekunle I. Akindolire, Evaluation of hydro-geochemistry of Lagos Lagoon besides festival (Festac) town Lagos, Nigeria. Ethiopian Journal of Environmental Studies & Management 14 (Supplementary), (2021) 935 – 947.

Google Scholar

[4] E.C. Bowo, I. Umi, J. Misto, A. Tjahjo, S. Agus, Analysis of Total Suspended Solids (TSS) at Bedadung River, Jember District of Indonesia Using Remote Sensing Sentinel 2A Data. Singapore Journal of Scientific Research, 9(4), (2019) 117-123.

Google Scholar

[5] K. Moustafa, B. Satesh, The Importance of Clean Water. Satesh Bidaisee. Biomed Journal of Sci & Tech Res, 8 (5), (2018) 1-4.

Google Scholar

[6] Y.O. Familusi, A.A. Adekunle, A.A. Badejo, O.J. Adeosun, K.A. Muiedu, J.O. Olusami, B.E. Adewunmi, D.A. Ogundare, Significance of clean water for sustainable good health in Nigeria. Analecta technical, 15 (2), (2021) 1-8.

DOI: 10.14232/analecta.2021.2.1-8

Google Scholar

[7] M.A. Torres‑Vera, Mapping of total suspended solids using Landsat imagery and machine learning. International Journal of Environmental Science and Technology, 20: (2023) 11877–11890.

DOI: 10.1007/s13762-023-04787-y

Google Scholar

[8] R.O. Shelle, A.O, Adeleye, I.A. Ladigbolu, Water quality monitoring, a must in fisheries and aquaculture management." World Rural Observations, 2, (2010) 38-41

Google Scholar

[9] P.K. Shobiya, S. Sivashanthini, S. Sutharshiny, K. Saruga, K. Gunaalan, Variations in Important Water Quality Parameters and Fish Species in Thondaimanaru Lagoon, Jaffna, Sri Lanka. Vingnanam Journal of Science, 14 (2), (2019) 21-26.

DOI: 10.4038/vingnanam.v14i2.4156

Google Scholar

[10] A. Agarwal, M. Saxena, Assessment of pollution by physicochemical water parameters using regression analysis: a case study of Gagan River at Moradabad-India. Adv. Appl. Sci. Res. 2(2), (2011) 185–189.

DOI: 10.3233/ajw-2011-8_4_13

Google Scholar

[11] M. Hossein, Y. Ken-Tye, W. Anusha, A critical analysis of parameter choices in water quality assessment. Water research, 258, (2024) 121777.

DOI: 10.1016/j.watres.2024.121777

Google Scholar

[12] C. Brian, 2021 What are total suspended solids (TSS)? Water Filter Guru.com, (2021)

Google Scholar

[13] C. Wang, D. Li, D. Wang, S. Chen, W. Liu, A total suspended sediment retrieval model for multiple estuaries and coasts by Landsat imageries. 4th International Workshop on Earth Observation and Remote Sensing Applications, 10.1109/EORSA. (2016) 7552785.

DOI: 10.1109/eorsa.2016.7552785

Google Scholar

[14] J. Chen, W. Quan, T. Cui, Q. Song, Estimation of total suspended matter concentration from MODIS data using a neural network model in the China eastern coastal zone. Estuarine, Coastal and Shelf Science, 155, (2015)104 - 113

DOI: 10.1016/j.ecss.2015.01.018

Google Scholar

[15] I.T. Seleem, D. Bafi, M. Karantzia, I. Parcharidis, Water Quality Monitoring Using Landsat 8 and Sentinel-2 Satellite Data (2014–2020) in Timsah Lake, Ismailia, Suez Canal Region (Egypt). Journal of the Indian Society of Remote Sensing, 50(12), (2022) 2411–2428.

DOI: 10.1007/s12524-022-01613-9

Google Scholar

[16] P.V. Lykhovyd, V.O. Sharii, Normalised difference moisture index in water stress assessment of maize crops. Agrology, 7(1), (2024) 21–26.

DOI: 10.32819/202403

Google Scholar

[17] E.E. Cruz-Montes, F.M. Torres-Bejarano, G.A. Campo-Daza, C. Padilla-Mendoza, Remote sensing application using Landsat 8 images for water quality assessments. Journal of Physics: Conference Series, 2475, (2023) 012007.

DOI: 10.1088/1742-6596/2475/1/012007

Google Scholar

[18] M.K. Mukhtar, M.D.M. Supriatna, The validation of water quality parameter algorithm using Landsat 8 and Sentinel-2 image in Palabuhanratu Bay. Earth and Environmental Science 846, (2021) 012022.

DOI: 10.1088/1755-1315/846/1/012022

Google Scholar

[19] O.O. Loto, A.O. Ajibare, Pollution Assessment of the Physico-Chemical Properties of the Lagos Lagoon. Nigerian Journal of Technological Research (2021)1-7.

DOI: 10.4314/njtr.v16i3.1

Google Scholar

[20] J.A. Nkwoji, S.L. Ugbanaa, M.Y. Ina-Salwany, Impacts of land-based pollutants on water chemistry and benthic macroinvertebrates community in a coastal lagoon, Lagos, Nigeria. Scientific Africa, 20 (e00220), (2019) 1-9.

DOI: 10.1016/j.sciaf.2019.e00220

Google Scholar

[21] USGS, Landsat 8-9 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) Collection 2 Level-1 15- to 30-meter multispectral data. Earth Resources Observation and Science (EROS) Centre. (2020).

Google Scholar

[22] S. Kristi, G. Timothy, Landsat 8-9 Collection 2 (C2) Level 2 Science Product (L2SP) Guide. EROS Sioux Falls, South Dakota. LSDS-1619 Version 4.0.(2020).

Google Scholar

[23] M. Badawi, D. Helder, L. Leigh, X. Jing, Methods for Earth-Observing Satellite Surface Reflectance Validation." Remote Sensing 11 (13): (2019)154.

DOI: 10.3390/rs11131543

Google Scholar

[24] L.G. Montalvo, Spectral analysis of suspended material in coastal waters: A comparison between band math equations. Available online: https://docplayer.net39330139-Spectral-analysis-of-suspended-material-in-coastal-waters-a-comparison-between-band-math-equations.html (2010) (accessed on 18 January 2025).

Google Scholar

[25] S. Hafeez, M.S. Wong, S. Abbas, G. Jiang, Assessing the potential of geostationary Himawari-8 for mapping surface total suspended solids and its diurnal changes. Remote Sens. 13, (2021) 336.

DOI: 10.3390/rs13030336

Google Scholar

[26] D. Arisanty, N.S. Aswin, Remote Sensing Studies of Suspended Sediment Concentration Variation in Barito Delta. IOP Conf. Ser. Earth Environ. Sci. 2017, 98, (2017)1- 6.

DOI: 10.1088/1755-1315/98/1/012058

Google Scholar

[27] R. Sankaran, A. Jassim, A.J. Al-Khayat, C. Mark Edward, N.S. Fadhil, A.A. Hamad, Retrieval of suspended sediment concentration (SSC) in the Arabian Gulfwater of arid region by Sentinel-2 data. Science of the Total Environment, 904 (166875) (2023)1-16.

DOI: 10.1016/j.scitotenv.2023.166875

Google Scholar

[28] L. Shen, C. Li, Water body extraction from Landsat ETM+ imagery using adaboost algorithm. In Proceedings of the 18th International Conference on Geoinformatics, Beijing, China, 18–20 June, (2010) 1–4.

DOI: 10.1109/geoinformatics.2010.5567762

Google Scholar

[29] Z. Fang-fang, Z. Bing, L. Jun-sheng, S. Qian, W. Yuanfeng, S. Yang, Comparative analysis of automatic water identification method based on multispectral remote sensing. Procedia Environ. Sci. 11, (2011) 1482–1487.

DOI: 10.1016/j.proenv.2011.12.223

Google Scholar

[30] J. Laonamsai, P. Julphunthong, T. Saprathet, B. Kimmany, T. Ganchanasuragit, P. Chomcheawchan, N. Tomun, Utilizing NDWI, MNDWI, SAVI, WRI, and AWEI for Estimating Erosion and Deposition in Ping River in Thailand. Hydrology, 10 (70) (2023) 1-25.

DOI: 10.3390/hydrology10030070

Google Scholar

[31] G.L. Feyisa, M. Henrik, F. Rasmus, R.P. Simon, Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sensing of Environment, 140, (2014) 23-35.

DOI: 10.1016/j.rse.2013.08.029

Google Scholar

[32] K.P. Kapil, A.D. Prasad, G. Padma, Water indices for surface water extraction using geospatial techniques: A brief review. Sustainable Water Resources Management, 10 (70) (2024).

DOI: 10.1007/s40899-024-01035-0

Google Scholar

[33] M. Xu, H. Liu, R. Beck, J. Lekki, B. Yang, S. Shu, E.L. Kang, R. Anderson, R. Johansen, E. Emery, M. Reif, T. Benko, A spectral space partition guided ensemble method for retrieving chlorophyll-a concentration in inland waters from Sentinel-2 satellite imagery. J. Gt. Lakes Res. 45 (3), (2019) 454–465.

DOI: 10.1016/j.jglr.2018.09.002

Google Scholar

[34] S. Rajendran, N. Al-Naimi, J.A. Al Khayat, C.F. Sorino, F.N. Sadooni, H.A. Al Kuwari, Chlorophyll-a concentrations in the Arabian Gulf waters of arid region: a case study from the northern coast of Qatar. Reg. Stud. Mar. Sci. (2022).

DOI: 10.1016/j.rsma.2022.102680

Google Scholar

[35] X. Hanqiu, X. Guangzhi, W. Xiaole, H. Xiujuan, W. Yifan, Lockdown effects on total suspended solids concentrations in the Lower Min River (China) during observation and geoinformation. 98, (2021) 102301.

DOI: 10.1016/j.jag.2021.102301

Google Scholar

[36] A.K.M. Hossain, J. Yafei, C. Xiaobo, 2010. Development of Remote Sensing Based Index for Estimating/Mapping Suspended Sediment Concentration in River and Lake Environments. In Proceedings of the 8th International Symposium on Ecohydraulics (ISE 2010) 0435, Zaragoza, Spain, 12–16 September (2010) 578–585.

Google Scholar

[37] L. Lymburner, E, Botha, E. Hestir, J. Anstee, S. Sagar, T. Malthus, T. Landsat 8: providing continuity and increased precision for measuring multi-decadal time series of total suspended matter. Remote Sens. Environ. 185, (2016) 108–118.

DOI: 10.1016/j.rse.2016.04.011

Google Scholar

[38] F.O. Lawal, T.M. Agaja. K.A. Afolabi, Spatial Pattern of Water Quality Parameters in Ologe Lagoon Lagos State, Nigeria. FUTY Journal of the Environment, 16 (1) (2022) 22-33

Google Scholar

[39] J. A. Nkwoji, S.I. Ugbanaa, M.Y. Ina-Salwany, Impacts of land-based pollutants on water chemistry and benthic macroinvertebrates community in a coastal lagoon, Lagos, Nigeria. Scientific Africa, 20 (e00220) (2019) 1-9.

DOI: 10.1016/j.sciaf.2019.e00220

Google Scholar

[40] A, Banunle, A.A. Agbeshie, M.O. Odumanye, R. Adjei, A. Bosomtwi, Interactive effect of anthropogenic activities and seasonal changes on the biophysicochemical properties and heavy metal status of tropical surface water resources. Scientific African, 27 (2025) (e02495).

DOI: 10.1016/j.sciaf.2024.e02495

Google Scholar

[41] M.D. Gaines, M.G. Tulbure, V. Perin, Effects of climate and anthropogenic drivers on surface water area in the South-eastern United States Water Resour. Res., 58. (2022).

DOI: 10.1029/2021wr031484

Google Scholar

[42] C. Zhang, Y. Liu, X. Chen, Y. Gao, Estimation of suspended sediment concentration in the Yangtze Main stream based on Sentinel-2 MSI data. Remote Sens. 14, (2022) 4446.

DOI: 10.3390/rs14184446

Google Scholar

[43] B.C. Okorie, K. Koffi, C.K. Onyema, S. Hendrik, A.M. Pierre, A.D. Kwasi, Land Use effects on water chemistry in Lagos Lagoon, Nigeria (West Africa). International Review of Hydrobiology, 108, (2024) 65-75.

DOI: 10.1002/iroh.202402172

Google Scholar

[44] O.T. Fajemila, M. Martínez-Colón, N. Sariaslan, I.S. Council, T.O. Kolawole, M.R. Langer, Contamination Levels of Potentially Toxic Elements and Foraminiferal Distribution Patterns in Lagos Lagoon: A Correlation Analysis. Water, 14 (37) (2025)1-25.

DOI: 10.3390/w14010037

Google Scholar

[45] A.P. Onyena, C.A. Okoro, Spatio-temporal variations in water and sediment parameters of Abule Agege, Abule Eledu, Ogbe, creeks adjoining Lagos Lagoon, Nigeria. J. Ecol. Nat. Environ, 11, (2019) 46–54.

DOI: 10.5897/jene2019.0754

Google Scholar

[46] S.A. Abdi, I. Nugraha, A.W. Putra, A. Resi, Development of Total Suspended Solid (TSS) estimation algorithm using Landsat 9 satellite imagery in Cacaban Reservoir waters. International Journal of Progressive Sciences and Technologies, 38 (1) (2023) 84-92.

DOI: 10.52155/ijpsat.v38.1.5226

Google Scholar

[47] N. Na'imah, D. Taryana, P.S. Wiyana, Mapping the Distribution of Total Suspended Solids (TSS) in Gondang Reservoir, Lamongan Using Multi-Temporal Landsat Imagery. Future Space: Studies in Geo-Education. 1(3), (2024) 286-305.

DOI: 10.69877/fssge.v1i3.31

Google Scholar

[48] J. Hafizan, G. Adiana, A. Atikah, The Evaluation of Dissolved Oxygen (DO), Total Suspended Solids (TSS) and Suspended Sediment Concentration (SSC) in Terengganu River, Malaysia. International Journal of Engineering & Technology, 7 (3.14) (2018) 44-48.

DOI: 10.14419/ijet.v7i3.14.16860

Google Scholar

[49] L. Shi, Z. Mao, Z. Wang, Retrieval of total suspended matter concentrations from high resolution WorldView-2 imagery: a case study of inland rivers IOP Conference Series: Earth and Environmental Science 121(2018) 032036.

DOI: 10.1088/1755-1315/121/3/032036

Google Scholar

[50] J.J. Wang, X.X. Lu, Estimation of suspended sediment concentrations using Terra MODIS: an example from the lower Yangtze River, China. Sci. Total Environ. 408, (2010)1131–1138.

DOI: 10.1016/j.scitotenv.2009.11.057

Google Scholar

[51] N. Pahlevan, S. Smith, K. Alikas, J. Anstee, C. Barbosa, C. Binding, M. Bresciani, B. Cremella, C. Giardino, D. Gurlin, V. Fernandez, C. Jamet, K. Kangro, M.K. Lehmann, H. Loisel, B.H. Matsushita, L. Olmanson, G. Potvin, S. Simis, A. VanderWoude, V. Vantrepotte, A. Ruiz-Verdùr, Simultaneous retrieval of selected optical water quality indicators from Landsat-8, Sentinel-2, and Sentinel-3. Remote Sens. Environ. 270, (2022) 112860.

DOI: 10.1016/j.rse.2021.112860

Google Scholar

[52] A.P. Yunus, Y. Masago, Y. Hijioka, Analysis of long-term (2002-2020) trends and peak events in total suspended solids concentrations in the Chesapeake Bay using MODIS imagery. J. Environ. Manag. 299, (2021) 113550 https://doi.org/10.1016/J. JENVMAN.2021.113550

DOI: 10.1016/j.jenvman.2021.113550

Google Scholar