[1]
A. Adedayo, D. Adeyemi, J.P. Uyimandu, S. Chigome, C. Anyakora, Evaluation of the levels of polycyclic aromatic hydrocarbons in surface and bottom waters of lagos lagoon, Nigeria." African. Journal of Pharmaceutical Sciences and Pharmacy, 3 (1). (2012)
Google Scholar
[2]
P.O. Oyeleke, O.P. Samuel, A.A. Olushola, Assessment of Some Physico-Chemical Parameters of Lagos Lagoon, Southwestern Nigeria. Academic Journal of Chemistry, 4 (3) (2019) 9-11.
DOI: 10.32861/ajc.43.09.11
Google Scholar
[3]
A.A. Adekunle I. Akindolire, Evaluation of hydro-geochemistry of Lagos Lagoon besides festival (Festac) town Lagos, Nigeria. Ethiopian Journal of Environmental Studies & Management 14 (Supplementary), (2021) 935 – 947.
Google Scholar
[4]
E.C. Bowo, I. Umi, J. Misto, A. Tjahjo, S. Agus, Analysis of Total Suspended Solids (TSS) at Bedadung River, Jember District of Indonesia Using Remote Sensing Sentinel 2A Data. Singapore Journal of Scientific Research, 9(4), (2019) 117-123.
Google Scholar
[5]
K. Moustafa, B. Satesh, The Importance of Clean Water. Satesh Bidaisee. Biomed Journal of Sci & Tech Res, 8 (5), (2018) 1-4.
Google Scholar
[6]
Y.O. Familusi, A.A. Adekunle, A.A. Badejo, O.J. Adeosun, K.A. Muiedu, J.O. Olusami, B.E. Adewunmi, D.A. Ogundare, Significance of clean water for sustainable good health in Nigeria. Analecta technical, 15 (2), (2021) 1-8.
DOI: 10.14232/analecta.2021.2.1-8
Google Scholar
[7]
M.A. Torres‑Vera, Mapping of total suspended solids using Landsat imagery and machine learning. International Journal of Environmental Science and Technology, 20: (2023) 11877–11890.
DOI: 10.1007/s13762-023-04787-y
Google Scholar
[8]
R.O. Shelle, A.O, Adeleye, I.A. Ladigbolu, Water quality monitoring, a must in fisheries and aquaculture management." World Rural Observations, 2, (2010) 38-41
Google Scholar
[9]
P.K. Shobiya, S. Sivashanthini, S. Sutharshiny, K. Saruga, K. Gunaalan, Variations in Important Water Quality Parameters and Fish Species in Thondaimanaru Lagoon, Jaffna, Sri Lanka. Vingnanam Journal of Science, 14 (2), (2019) 21-26.
DOI: 10.4038/vingnanam.v14i2.4156
Google Scholar
[10]
A. Agarwal, M. Saxena, Assessment of pollution by physicochemical water parameters using regression analysis: a case study of Gagan River at Moradabad-India. Adv. Appl. Sci. Res. 2(2), (2011) 185–189.
DOI: 10.3233/ajw-2011-8_4_13
Google Scholar
[11]
M. Hossein, Y. Ken-Tye, W. Anusha, A critical analysis of parameter choices in water quality assessment. Water research, 258, (2024) 121777.
DOI: 10.1016/j.watres.2024.121777
Google Scholar
[12]
C. Brian, 2021 What are total suspended solids (TSS)? Water Filter Guru.com, (2021)
Google Scholar
[13]
C. Wang, D. Li, D. Wang, S. Chen, W. Liu, A total suspended sediment retrieval model for multiple estuaries and coasts by Landsat imageries. 4th International Workshop on Earth Observation and Remote Sensing Applications, 10.1109/EORSA. (2016) 7552785.
DOI: 10.1109/eorsa.2016.7552785
Google Scholar
[14]
J. Chen, W. Quan, T. Cui, Q. Song, Estimation of total suspended matter concentration from MODIS data using a neural network model in the China eastern coastal zone. Estuarine, Coastal and Shelf Science, 155, (2015)104 - 113
DOI: 10.1016/j.ecss.2015.01.018
Google Scholar
[15]
I.T. Seleem, D. Bafi, M. Karantzia, I. Parcharidis, Water Quality Monitoring Using Landsat 8 and Sentinel-2 Satellite Data (2014–2020) in Timsah Lake, Ismailia, Suez Canal Region (Egypt). Journal of the Indian Society of Remote Sensing, 50(12), (2022) 2411–2428.
DOI: 10.1007/s12524-022-01613-9
Google Scholar
[16]
P.V. Lykhovyd, V.O. Sharii, Normalised difference moisture index in water stress assessment of maize crops. Agrology, 7(1), (2024) 21–26.
DOI: 10.32819/202403
Google Scholar
[17]
E.E. Cruz-Montes, F.M. Torres-Bejarano, G.A. Campo-Daza, C. Padilla-Mendoza, Remote sensing application using Landsat 8 images for water quality assessments. Journal of Physics: Conference Series, 2475, (2023) 012007.
DOI: 10.1088/1742-6596/2475/1/012007
Google Scholar
[18]
M.K. Mukhtar, M.D.M. Supriatna, The validation of water quality parameter algorithm using Landsat 8 and Sentinel-2 image in Palabuhanratu Bay. Earth and Environmental Science 846, (2021) 012022.
DOI: 10.1088/1755-1315/846/1/012022
Google Scholar
[19]
O.O. Loto, A.O. Ajibare, Pollution Assessment of the Physico-Chemical Properties of the Lagos Lagoon. Nigerian Journal of Technological Research (2021)1-7.
DOI: 10.4314/njtr.v16i3.1
Google Scholar
[20]
J.A. Nkwoji, S.L. Ugbanaa, M.Y. Ina-Salwany, Impacts of land-based pollutants on water chemistry and benthic macroinvertebrates community in a coastal lagoon, Lagos, Nigeria. Scientific Africa, 20 (e00220), (2019) 1-9.
DOI: 10.1016/j.sciaf.2019.e00220
Google Scholar
[21]
USGS, Landsat 8-9 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) Collection 2 Level-1 15- to 30-meter multispectral data. Earth Resources Observation and Science (EROS) Centre. (2020).
Google Scholar
[22]
S. Kristi, G. Timothy, Landsat 8-9 Collection 2 (C2) Level 2 Science Product (L2SP) Guide. EROS Sioux Falls, South Dakota. LSDS-1619 Version 4.0.(2020).
Google Scholar
[23]
M. Badawi, D. Helder, L. Leigh, X. Jing, Methods for Earth-Observing Satellite Surface Reflectance Validation." Remote Sensing 11 (13): (2019)154.
DOI: 10.3390/rs11131543
Google Scholar
[24]
L.G. Montalvo, Spectral analysis of suspended material in coastal waters: A comparison between band math equations. Available online: https://docplayer.net39330139-Spectral-analysis-of-suspended-material-in-coastal-waters-a-comparison-between-band-math-equations.html (2010) (accessed on 18 January 2025).
Google Scholar
[25]
S. Hafeez, M.S. Wong, S. Abbas, G. Jiang, Assessing the potential of geostationary Himawari-8 for mapping surface total suspended solids and its diurnal changes. Remote Sens. 13, (2021) 336.
DOI: 10.3390/rs13030336
Google Scholar
[26]
D. Arisanty, N.S. Aswin, Remote Sensing Studies of Suspended Sediment Concentration Variation in Barito Delta. IOP Conf. Ser. Earth Environ. Sci. 2017, 98, (2017)1- 6.
DOI: 10.1088/1755-1315/98/1/012058
Google Scholar
[27]
R. Sankaran, A. Jassim, A.J. Al-Khayat, C. Mark Edward, N.S. Fadhil, A.A. Hamad, Retrieval of suspended sediment concentration (SSC) in the Arabian Gulfwater of arid region by Sentinel-2 data. Science of the Total Environment, 904 (166875) (2023)1-16.
DOI: 10.1016/j.scitotenv.2023.166875
Google Scholar
[28]
L. Shen, C. Li, Water body extraction from Landsat ETM+ imagery using adaboost algorithm. In Proceedings of the 18th International Conference on Geoinformatics, Beijing, China, 18–20 June, (2010) 1–4.
DOI: 10.1109/geoinformatics.2010.5567762
Google Scholar
[29]
Z. Fang-fang, Z. Bing, L. Jun-sheng, S. Qian, W. Yuanfeng, S. Yang, Comparative analysis of automatic water identification method based on multispectral remote sensing. Procedia Environ. Sci. 11, (2011) 1482–1487.
DOI: 10.1016/j.proenv.2011.12.223
Google Scholar
[30]
J. Laonamsai, P. Julphunthong, T. Saprathet, B. Kimmany, T. Ganchanasuragit, P. Chomcheawchan, N. Tomun, Utilizing NDWI, MNDWI, SAVI, WRI, and AWEI for Estimating Erosion and Deposition in Ping River in Thailand. Hydrology, 10 (70) (2023) 1-25.
DOI: 10.3390/hydrology10030070
Google Scholar
[31]
G.L. Feyisa, M. Henrik, F. Rasmus, R.P. Simon, Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sensing of Environment, 140, (2014) 23-35.
DOI: 10.1016/j.rse.2013.08.029
Google Scholar
[32]
K.P. Kapil, A.D. Prasad, G. Padma, Water indices for surface water extraction using geospatial techniques: A brief review. Sustainable Water Resources Management, 10 (70) (2024).
DOI: 10.1007/s40899-024-01035-0
Google Scholar
[33]
M. Xu, H. Liu, R. Beck, J. Lekki, B. Yang, S. Shu, E.L. Kang, R. Anderson, R. Johansen, E. Emery, M. Reif, T. Benko, A spectral space partition guided ensemble method for retrieving chlorophyll-a concentration in inland waters from Sentinel-2 satellite imagery. J. Gt. Lakes Res. 45 (3), (2019) 454–465.
DOI: 10.1016/j.jglr.2018.09.002
Google Scholar
[34]
S. Rajendran, N. Al-Naimi, J.A. Al Khayat, C.F. Sorino, F.N. Sadooni, H.A. Al Kuwari, Chlorophyll-a concentrations in the Arabian Gulf waters of arid region: a case study from the northern coast of Qatar. Reg. Stud. Mar. Sci. (2022).
DOI: 10.1016/j.rsma.2022.102680
Google Scholar
[35]
X. Hanqiu, X. Guangzhi, W. Xiaole, H. Xiujuan, W. Yifan, Lockdown effects on total suspended solids concentrations in the Lower Min River (China) during observation and geoinformation. 98, (2021) 102301.
DOI: 10.1016/j.jag.2021.102301
Google Scholar
[36]
A.K.M. Hossain, J. Yafei, C. Xiaobo, 2010. Development of Remote Sensing Based Index for Estimating/Mapping Suspended Sediment Concentration in River and Lake Environments. In Proceedings of the 8th International Symposium on Ecohydraulics (ISE 2010) 0435, Zaragoza, Spain, 12–16 September (2010) 578–585.
Google Scholar
[37]
L. Lymburner, E, Botha, E. Hestir, J. Anstee, S. Sagar, T. Malthus, T. Landsat 8: providing continuity and increased precision for measuring multi-decadal time series of total suspended matter. Remote Sens. Environ. 185, (2016) 108–118.
DOI: 10.1016/j.rse.2016.04.011
Google Scholar
[38]
F.O. Lawal, T.M. Agaja. K.A. Afolabi, Spatial Pattern of Water Quality Parameters in Ologe Lagoon Lagos State, Nigeria. FUTY Journal of the Environment, 16 (1) (2022) 22-33
Google Scholar
[39]
J. A. Nkwoji, S.I. Ugbanaa, M.Y. Ina-Salwany, Impacts of land-based pollutants on water chemistry and benthic macroinvertebrates community in a coastal lagoon, Lagos, Nigeria. Scientific Africa, 20 (e00220) (2019) 1-9.
DOI: 10.1016/j.sciaf.2019.e00220
Google Scholar
[40]
A, Banunle, A.A. Agbeshie, M.O. Odumanye, R. Adjei, A. Bosomtwi, Interactive effect of anthropogenic activities and seasonal changes on the biophysicochemical properties and heavy metal status of tropical surface water resources. Scientific African, 27 (2025) (e02495).
DOI: 10.1016/j.sciaf.2024.e02495
Google Scholar
[41]
M.D. Gaines, M.G. Tulbure, V. Perin, Effects of climate and anthropogenic drivers on surface water area in the South-eastern United States Water Resour. Res., 58. (2022).
DOI: 10.1029/2021wr031484
Google Scholar
[42]
C. Zhang, Y. Liu, X. Chen, Y. Gao, Estimation of suspended sediment concentration in the Yangtze Main stream based on Sentinel-2 MSI data. Remote Sens. 14, (2022) 4446.
DOI: 10.3390/rs14184446
Google Scholar
[43]
B.C. Okorie, K. Koffi, C.K. Onyema, S. Hendrik, A.M. Pierre, A.D. Kwasi, Land Use effects on water chemistry in Lagos Lagoon, Nigeria (West Africa). International Review of Hydrobiology, 108, (2024) 65-75.
DOI: 10.1002/iroh.202402172
Google Scholar
[44]
O.T. Fajemila, M. Martínez-Colón, N. Sariaslan, I.S. Council, T.O. Kolawole, M.R. Langer, Contamination Levels of Potentially Toxic Elements and Foraminiferal Distribution Patterns in Lagos Lagoon: A Correlation Analysis. Water, 14 (37) (2025)1-25.
DOI: 10.3390/w14010037
Google Scholar
[45]
A.P. Onyena, C.A. Okoro, Spatio-temporal variations in water and sediment parameters of Abule Agege, Abule Eledu, Ogbe, creeks adjoining Lagos Lagoon, Nigeria. J. Ecol. Nat. Environ, 11, (2019) 46–54.
DOI: 10.5897/jene2019.0754
Google Scholar
[46]
S.A. Abdi, I. Nugraha, A.W. Putra, A. Resi, Development of Total Suspended Solid (TSS) estimation algorithm using Landsat 9 satellite imagery in Cacaban Reservoir waters. International Journal of Progressive Sciences and Technologies, 38 (1) (2023) 84-92.
DOI: 10.52155/ijpsat.v38.1.5226
Google Scholar
[47]
N. Na'imah, D. Taryana, P.S. Wiyana, Mapping the Distribution of Total Suspended Solids (TSS) in Gondang Reservoir, Lamongan Using Multi-Temporal Landsat Imagery. Future Space: Studies in Geo-Education. 1(3), (2024) 286-305.
DOI: 10.69877/fssge.v1i3.31
Google Scholar
[48]
J. Hafizan, G. Adiana, A. Atikah, The Evaluation of Dissolved Oxygen (DO), Total Suspended Solids (TSS) and Suspended Sediment Concentration (SSC) in Terengganu River, Malaysia. International Journal of Engineering & Technology, 7 (3.14) (2018) 44-48.
DOI: 10.14419/ijet.v7i3.14.16860
Google Scholar
[49]
L. Shi, Z. Mao, Z. Wang, Retrieval of total suspended matter concentrations from high resolution WorldView-2 imagery: a case study of inland rivers IOP Conference Series: Earth and Environmental Science 121(2018) 032036.
DOI: 10.1088/1755-1315/121/3/032036
Google Scholar
[50]
J.J. Wang, X.X. Lu, Estimation of suspended sediment concentrations using Terra MODIS: an example from the lower Yangtze River, China. Sci. Total Environ. 408, (2010)1131–1138.
DOI: 10.1016/j.scitotenv.2009.11.057
Google Scholar
[51]
N. Pahlevan, S. Smith, K. Alikas, J. Anstee, C. Barbosa, C. Binding, M. Bresciani, B. Cremella, C. Giardino, D. Gurlin, V. Fernandez, C. Jamet, K. Kangro, M.K. Lehmann, H. Loisel, B.H. Matsushita, L. Olmanson, G. Potvin, S. Simis, A. VanderWoude, V. Vantrepotte, A. Ruiz-Verdùr, Simultaneous retrieval of selected optical water quality indicators from Landsat-8, Sentinel-2, and Sentinel-3. Remote Sens. Environ. 270, (2022) 112860.
DOI: 10.1016/j.rse.2021.112860
Google Scholar
[52]
A.P. Yunus, Y. Masago, Y. Hijioka, Analysis of long-term (2002-2020) trends and peak events in total suspended solids concentrations in the Chesapeake Bay using MODIS imagery. J. Environ. Manag. 299, (2021) 113550 https://doi.org/10.1016/J. JENVMAN.2021.113550
DOI: 10.1016/j.jenvman.2021.113550
Google Scholar