[1]
E. Reynares, E. Sangoi, J. Vega, M. L. Caliusco, M. R. Galli, Voltage dip diagnosis in electrical distribution systems using extreme learning machines: an empirical evaluation, in: 2019 International Conference on Intelligent Computing & Applications (ICICA), 2019.
DOI: 10.31224/osf.io/3smqp
Google Scholar
[2]
M.I. Buzdugan, Voltage dips in power quality-a brief review, in: AEIT International Annual Conference (AEIT), 2019, pp.1-6.
DOI: 10.23919/aeit.2019.8893404
Google Scholar
[3]
A. Honrubia-Escribano, E. Gómez-Lázaro, A. Molina-García, J. A. Fuentes, Influence of voltage dips on industrial equipment: Analysis and assessment, Int. J. Electr. Power Energ. Syst. 41 (1) (2012) 87-95.
DOI: 10.1016/j.ijepes.2012.03.018
Google Scholar
[4]
M.H.J. Bollen, Understanding Power Quality Problems – Voltage Sags and Interruptions, IEEE Press, New York, 1999.
Google Scholar
[5]
T. García-Sánchez, E. Gómez-Lázaro, A. Molina-García, Comparison of Voltage Dip Characterization under Grid-Code Requirements: Application to PV Power Plants, in: International Conference on Renewable Energies and Power Quality (ICREPQ'15), La Coruña, Spain, 2015, pp.2172-038.
DOI: 10.24084/repqj13.354
Google Scholar
[6]
A.M. Stanisavljević, V.A. Katić, B.P. Dumnić, B.P. Popadić, Overview of voltage dips detection analysis methods, in: International Symposium on Power Electronics (Ee), 2017, pp.1-6.
Google Scholar
[7]
Z. Gong, C. Liu, L. Shang, Q. Lai, Y. Terriche, Power decoupling strategy for voltage modulated direct power control of voltage source inverters connected to weak grids, IEEE Trans. Sustain. Energy 14 (1) (2022) 152-167.
DOI: 10.1109/tste.2022.3204405
Google Scholar
[8]
A.M. Hemeida, M.H. El-Ahmar, A. M. ElSayed, H. M. Hasanien, S. Alkhalaf, M. F. C. Esmail, Optimum design of hybrid wind/PV energy system for remote area, Ain Shams Eng. J. 11 (1) (2020) 11-23.
DOI: 10.1016/j.asej.2019.08.005
Google Scholar
[9]
M. Khodayar, M. E. Khodayar, S. M. J. Jalali, Deep learning for pattern recognition of photovoltaic energy generation, Electr. J. 34 (1) (2021) 106882.
DOI: 10.1016/j.tej.2020.106882
Google Scholar
[10]
N.T. Mbungu, R. M. Naidoo, R. C. Bansal, M. W. Siti, D. H. Tungadio, An overview of renewable energy resources and grid integration for commercial building applications, J. Energy Storage 29 (2020) 101385.
DOI: 10.1016/j.est.2020.101385
Google Scholar
[11]
P.G.V. Sampaio, M.O.A. González, Photovoltaic solar energy: Conceptual framework, Renew. Sustain. Energy Rev. 74 (2017) 590-601.
DOI: 10.1016/j.rser.2017.02.081
Google Scholar
[12]
Z. Song, J. Liu, H. Yang, Air pollution and soiling implications for solar photovoltaic power generation: A comprehensive review, Appl. Energy 298 (2021) 117247.
DOI: 10.1016/j.apenergy.2021.117247
Google Scholar
[13]
A. Ajami, R. V. Ramaiah, Power quality monitoring and analysis in an industrial environment, Int. J. Eng. Res. Appl. 6 (7) (2016) 62-68.
Google Scholar
[14]
M.H. Moradi, M. Rahmani, A. Radan, Diagnosis and mitigation of voltage sags in a large-scale industrial power system, IEEE Trans. Ind. Appl. (2018).
Google Scholar
[15]
V.E. Wagner, A.A. Andreshak, J.P. Staniak, Power quality and factory automation, IEEE Trans. Ind. Appl. 26 (1990) 620-626.
DOI: 10.1109/28.55984
Google Scholar
[16]
L.D. Ndoumbe, S. Eke, C.H. Kom, A. T. Yeremou, A. Nanfak, G.M. Ngaleu, Power Quality Problems, Signature Method for Voltage Dips and Swells Detection, Classification and Characterization, Eur. J. Electr. Eng. 23 (3) (2021).
DOI: 10.18280/ejee.230303
Google Scholar
[17]
E.R. Collins, A. Mansoor, Effects of voltage sags on ac motor drives, in: IEEE Annual in Textile, Fiber, and Film Industry Technical Conference, 1997, pp.1-7.
DOI: 10.1109/texcon.1997.598533
Google Scholar
[18]
S.W. Middlekauff, B.R. Collins Jr., System and customer impact: considerations for series custom power devices, IEEE Trans. Power Deliv. 13 (1) (1998) 278-282.
DOI: 10.1109/61.660890
Google Scholar
[19]
H. Sarmiento, E. Estrada, A voltage sag study in an industry with adjustable speed drives, IEEE Ind. Appl. Mag. 2 (1) (1996) 16-19.
DOI: 10.1109/2943.476593
Google Scholar
[20]
R. Targosz, J. Manson, Pan-European power quality survey, in: 9th International Conference on Electrical Power Quality and Utilisation, Piscataway, 2007, pp.1-6.
DOI: 10.1109/epqu.2007.4424203
Google Scholar
[21]
V. Wagner, A. Andreshak, J. Staniak, Power quality and factory automation, IEEE Trans. Ind. Appl. 26 (4) (1990) 620-626.
DOI: 10.1109/28.55984
Google Scholar
[22]
IEEE, IEEE Recommended Practice for Monitoring Electric Power Quality, IEEE Std 1159-2019 (2019) 1-98.
Google Scholar
[23]
R. Leborgne, G. Olguin, M. Bollen, The influence of pq-monitor connection on voltage dip measurement, in: IEE - MedPower, Cyprus, 2004.
Google Scholar
[24]
R.C. Dugan, M.F. McGranaghan, H.W. Beaty, Electrical Power Systems Quality, McGraw-Hill, 1996.
Google Scholar
[25]
V. Ignatova, P. Granjon, S. Bacha, Power electronics harmonic analysis based on the linear time periodic modelling. Applications for AC/DC/AC power electronics interface, EPQU J. 12 (2006) 81-87.
Google Scholar
[26]
L. Zhang, M. Bollen, A method for characterizing unbalanced voltage dips (sags) with symmetrical components, IEEE Power Eng. Lett. 18 (7) (1998) 50-52.
Google Scholar
[27]
Y. Wang, A. Bagheri, M. H. Bollen, X. Y. Xiao, Single event characteristics for voltage dips in three-phase systems, IEEE Trans. Power Deliv. 32 (2) (2016) 832-840.
DOI: 10.1109/tpwrd.2016.2574924
Google Scholar
[28]
A. Bagheri, M. H. Bollen, I. Y. Gu, Improved characterization of multi-stage voltage dips based on the space phasor model, Electr. Power Syst. Res. 154 (2018) 319-328.
DOI: 10.1016/j.epsr.2017.09.004
Google Scholar
[29]
L. E. Weldemariam, V. Cuk, J. F. G. Cobben, J. B. van Waes, Regulation and classification of voltage dips, in: 24th International Conference and Exhibition on Electricity Distribution (CIRED), 2017, pp.832-836.
DOI: 10.1049/oap-cired.2017.0734
Google Scholar
[30]
A.Y. Shash, N. Abdeltawab, D.M. Hassan, M. Darweesh, Y.G. Hegazy, Computational Methods, Artificial Intelligence, Modeling and Simulation Applications in Green Hydrogen Production: A Review, Hydrogen 25 (2024).
DOI: 10.3390/hydrogen6020021
Google Scholar
[31]
N. S. Tunaboylu, E. R. Collins Jr., S. W. Middlekauff, R. L. Morgan, Ride-through issues for DC motor drives during voltage sags, in: Proceedings of the IEEE, 1995, pp.52-58.
DOI: 10.1109/secon.1995.513056
Google Scholar
[32]
A. Van Zyl, R. Spee, A. Faveluke, S. Bhowmik, Voltage sag ride-through for adjustable-speed drives with active rectifiers, IEEE Trans. Ind. Appl. 34 (1998) 1270-1277.
DOI: 10.1109/28.739005
Google Scholar
[33]
J. L. Duran-Gomez, P. N. Enjeti, B. O. Woo, Effect of voltage sags on adjustable-speed drives: a critical evaluation and an approach to improve performance, IEEE Trans. Ind. Appl. 35 (6) (1999) 1440-1449.
DOI: 10.1109/28.806060
Google Scholar
[34]
M.R. Alam, K.M. Muttaqi, A. Bouzerdoum, A new approach for classification and characterization of voltage dips and swells using 3-D polarization ellipse parameters, IEEE Trans. Power Deliv. 30 (3) (2014) 1344-1353.
DOI: 10.1109/tpwrd.2014.2361624
Google Scholar
[35]
M. Ohrstrom, L. Soder, A comparison of two methods used for voltage dip characterization, in: 2003 IEEE Bologna Power Tech Conference Proceedings 4 (2003) 6.
DOI: 10.1109/ptc.2003.1304722
Google Scholar
[36]
E. Gómez-Lázaro, J. A. Fuentes, A. Molina-García, M. Cañas Carretón, Characterization and visualization of voltage dips in wind power installations, IEEE Trans. Power Deliv. 24 (4) (2009) 2071-2078.
DOI: 10.1109/tpwrd.2009.2027513
Google Scholar
[37]
M.R. Alam, K.M. Muttaqi, A. Bouzerdoum, Characterization of voltage dips and swells in a DG-embedded distribution network during and subsequent to islanding process and grid reconnection, IEEE Trans. Ind. Appl. 54 (5) (2018) 4028-4038.
DOI: 10.1109/tia.2018.2833056
Google Scholar
[38]
M. Zhao, Z. Kang, Voltage Sag Source Classification Identification based on AST-CEDT, SAGE J. (2024).
Google Scholar
[39]
L. Priyadarshini, P.K. Dash, M. Sahani, Diagnosis of Voltage Dips Using a Novel Morphological Filter and a Smart Deep Learning LSTM-Based Classifier, Springer (2022).
DOI: 10.1007/s40998-022-00550-0
Google Scholar
[40]
M. Veizaga, C. Delpha, D. Diallo, S. Bercu, L. Bertin, Classification of Voltage Sags Causes in Industrial Power Networks, IET Gener. Transm. Distrib. (2023).
DOI: 10.1049/gtd2.12765
Google Scholar