Rheological and Tribological Behavior of Cementitious Materials Incorporating Recycled Concrete Sand and Quarry Waste Sand

Article Preview

Abstract:

This study evaluates the impact of replacing natural sand (NS) with quarry waste sand (QWS) or recycled concrete sand (RCS) at varying substitution rates (0%, 25%, 50%, 75%, and 100%). The analyzed properties include Abrams cone slump, superplasticizer demand (SP), rheological and tribological parameters, mechanical strength, capillary water absorption, and shrinkage. The results show that QWS-based concrete exhibits better workability and requires less superplasticizer, whereas RCS-based concrete necessitates a higher admixture dosage. Both QWS sand and RCS sand significantly enhance the rheological and tribological properties of concrete Moreover, QWS sand provides higher mechanical strength than NS sand, with a strength gain of up to 16% at full replacement (100% QWS sand) at 90 days. Conversely, RCS sand reduces compressive strength by 28.6% at 28 days. and negatively affects porosity and capillary water absorption. However, these negative effects are mitigated when the RCS sand replacement is limited to 25%. QWS sand-based concrete exhibits slower shrinkage and reduced deformability compared to NS sand-based concrete. Predictive strength models were established based on experimental parameters, displaying a high correlation coefficient and a low root mean square error. Replacing NS sand with QWS sand or RCS sand reduced production costs, lowered carbon emissions, minimized waste, and preserved natural resources, offering a sustainable approach for concrete applications.

You might also be interested in these eBooks

Info:

Pages:

155-179

Citation:

Online since:

December 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.S. Vinayak, D.K. Popat. Properties of concrete by replacement of natural sand with artificial sand. Int. J. Eng. Res. Technol. 1(2012) 1-7.

Google Scholar

[2] T. K. Lohani, M. Padhi, K.P Dash, S. Jena. optimum utilization of quarry dust as partial replacement of sand in concrete. Int. J. Appl. Sci. Eng. 1(2012) 391-404.

Google Scholar

[3] A. Itim, K. Ezziane, E. H Kadri. Compressive strength and shrinkage of mortar containing various amounts of mineral additions. Constr. Build. Mater.25 (2011) 3603-3609.

DOI: 10.1016/j.conbuildmat.2011.03.055

Google Scholar

[4] A. Rmili, M. Ben Ouezdou, M. Added, E. Ghorbel. Incorporation of crushed sands and tunisian desert sands in the composition of self-compacting concretes part i: study of formulation. Int. J. Concr. Struct. Mater .3 (2009) 3-9.

DOI: 10.4334/ijcsm.2009.3.1.003

Google Scholar

[5] R. P. Nanda, A. K. Das, N. C. Moharana stone crusher dust as a fine aggregate in concrete for paving blocks. Int. J. Civ. Eng. 1 (2010) 613-620.

Google Scholar

[6] A.S.A. Al-Ameeri, Haider M. Al-Baghdadi. Using different types of fine aggregate to produce high strength concrete. Int. J. Arts & Sciences. issn :1944-6934 5.7 (2012) 187-196.

Google Scholar

[7] O.A. Cabrera, L.P. Traversa, N.F. Ortega. Flowability in Crushed Sand Mortar. Mater Construcc. 60 (2010) 15-130.

DOI: 10.3989/mc.2010.50909

Google Scholar

[8] A. S. Belaidi, S. Kenai, E.L. Kadri, H. Soualhi, B. Benchaâ. Effects of Experimental Ternary Cements on Fresh and Hardened Properties of Self-Compacting Concretes. J. Adhes. Sci. Technol, 30 (2016) 247-261.

DOI: 10.1080/01694243.2015.1099864

Google Scholar

[9] B. Benabed, E.H. Kadri, L. Azzouz, S. Kenai. Properties of Self-Compacting Mortar Made with Various Types of Sand. Cem. Concr Compos. 34.(2012).1167-1173.

DOI: 10.1016/j.cemconcomp.2012.07.007

Google Scholar

[10] L. Martinie, R. Pierre, R. Nicolas. Rheology of Fiber Reinforced Cementitious Materials: Classification and Prediction. Cem.Concr. Res. 40 (2010) 226-234.

DOI: 10.1016/j.cemconres.2009.08.032

Google Scholar

[11] S Safiddine, F. Debieb, Kadri. E.H, B Menadi, H. Soualhi. Effect of Crushed Sand and Limestone Crushed Sand Dust on the Rheology of Cement Mortar. Appl. Rheol. 27 (2017) 14940.

Google Scholar

[12] M. Westerholm, B. Lagerblad, J. Silfwerbrand, E. Forssberg. Influence of fine aggregate characteristics on the rheological properties of mortars. Cem. Concr. Compos. 30 (2008) 274-282.

DOI: 10.1016/j.cemconcomp.2007.08.008

Google Scholar

[13] O. Esping. Effect of limestone filler bet (h2o)-area on the fresh and hardened properties of self-compacting concrete. Cem.Concr. Res. 38(2008) 938-944.

DOI: 10.1016/j.cemconres.2008.03.010

Google Scholar

[14] M. Bederina, Z. Makhloufi, A. Bounoua. Effect of partial and total replacement of siliceous river sand with limestone crushed sand on the durability of mortars exposed to chemical solutions. Constr. Build. Mater. 47 (2013) 146-158.

DOI: 10.1016/j.conbuildmat.2013.05.037

Google Scholar

[15] B. Menadi, S. Kenai, J. Khatib, A. Aït-Mokhtar. Strength and durability of concrete incorporating crushed limestone sand. Constr. Build. Mater. 23(2009) 625–633.

DOI: 10.1016/j.conbuildmat.2008.02.005

Google Scholar

[16] Y. Bounedjema, K. Ezziane, A. Hallal. Variation of mechanical and rheological properties of mortar by replacement of natural sand with crushed sand. J. Adhes. Sci. Technol. 31 (2017) 182-201.

DOI: 10.1080/01694243.2016.1206331

Google Scholar

[17] F. Debieb, S. Kenai. The use of coarse and fine crushed bricks as aggregate in concrete. Constr. Build. Mater. 22(2008) 886–893.

DOI: 10.1016/j.conbuildmat.2006.12.013

Google Scholar

[18] M.N.L. Leroy, T.G. Guy. Molay, N. Joseph. Analysis of strength hydraulic concrete produced with a mixture of crushed gneiss and alluvial sand. J. Appl. Mech.Eng. 6 (2017) 289.

DOI: 10.4172/2168-9873.1000289

Google Scholar

[19] M.L.K. Khouadjia, M. Bouzidi, D. Mounsif. Experimental evaluation of workability and compressive strength of concrete with several local sand and mineral additions. Constr. Build. Mater. 98 (2015) 194–203.

DOI: 10.1016/j.conbuildmat.2015.08.081

Google Scholar

[20] E.H. Meziane, K. Ezziane, S. Kenai. Mechanical, hydration, and durability modifications provided to mortar made with crushed sand and blended cements. J. Adhes. Sci. Technol. 29 (2015)1 987–2005.

DOI: 10.1080/01694243.2015.1048931

Google Scholar

[21] J.L. Ramirez, J.M. Barcena, J.I. Urreta. Proposal for limitation and control of fines in calcareous sands based upon their influences in some concrete properties. Mater. Struct. 23 (1990) 277–288.

DOI: 10.1007/bf02472201

Google Scholar

[22] V.S. Ramachandran, C. Zhang. Influence of CaCO₃ on hydration and microstructural characteristics of tricalcium silicate. II Cemento,3, 1986, 129–152.

Google Scholar

[23] V. L. Bonavetti, E.F. Irassar. The effect of stone dust content in sand. Cem. Concr. Compos. 24 (1994) 580–590.

DOI: 10.1016/0008-8846(94)90147-3

Google Scholar

[24] E. Elat, A. Pierre, M. Mbessa. A. Noumowé. Microstructure and mechanical behavior of concrete based on crushed sand combined with alluvial sand. Civ. Eng. 1 (2020) 181–197.

DOI: 10.3390/civileng1030011

Google Scholar

[25] J. Xiao, W. Li, Y. Fan, X. Huang. An overview of study on recycled aggregate concrete in china (1996–2011). Constr. Build. Mater. 31 (2012) 364–383.

DOI: 10.1016/j.conbuildmat.2011.12.074

Google Scholar

[26] L. Evangelista, M. Guedes, J. De Brito, A. C Ferro. M.F. Pereira. Physical, chemical and mineralogical properties of fine recycled aggregates made from concrete waste. Constr. Build. Mater. 86 (2015) 178-188.

DOI: 10.1016/j.conbuildmat.2015.03.112

Google Scholar

[27] M. Sambucci, M. Valente. Influence of waste tire rubber particles size on the microstructural, mechanical, and acoustic insulation properties of 3d-printable cement mortars. Civ. Eng. J. 7(2021) 937-952.

DOI: 10.28991/cej-2021-03091701

Google Scholar

[28] O.H. Wallevik, J. E. Wallevik. Rheology as a tool in concrete science: the use of rheographs and workability boxes. Cem.Concr. Res. 41 (2011) 1279-1288.

DOI: 10.1016/j.cemconres.2011.01.009

Google Scholar

[29] T.T. Ngo, E.H Kadri, R. Bennacer, F. Cussigh. Use of tribometer to estimate interface friction and concrete boundary layer composition during the fluid concrete pumping. Constr. Build. Mater. 24 (2010) 1253-1261.

DOI: 10.1016/j.conbuildmat.2009.12.010

Google Scholar

[30] A. Lotfy, M. Al-Fayez. Performance evaluation of structural concrete using controlled quality coarse and fine recycled concrete aggregate. Cem. Concr. Compos. 61 (2015) 36–43.

DOI: 10.1016/j.cemconcomp.2015.02.009

Google Scholar

[31] P. Pereira, L. Evangelista, J. De Brito. The effect of superplasticisers on the workability and compressive strength of concrete made with fine recycled concrete aggregates. Constr. Build. Mater. 28 (2012) 722-729.

DOI: 10.1016/j.conbuildmat.2011.10.050

Google Scholar

[32] M. Braga, J. De Brito, R. Veiga. Incorporation of fine concrete aggregates in mortars. Constr. Build. Mater. 36 (2012) 960-968.

DOI: 10.1016/j.conbuildmat.2012.06.031

Google Scholar

[33] B. Meko, J.O. Ighalo, O.M Ofuyatan,. Enhancement of self-compactability of fresh self-compacting concrete: A Review. Cleaner Materials, 1 (2021) 100019.

DOI: 10.1016/j.clema.2021.100019

Google Scholar

[34] B. Li, S. Hou, Z. Duan, L. Li, W. Guo. Rheological Behavior and Compressive Strength of Concrete Made with Recycled Fine Aggregate of Different Size Range. Constr. Build. Mater. 268 (2021) 121172.

DOI: 10.1016/j.conbuildmat.2020.121172

Google Scholar

[35] J. Nur Farah Aziera, L. Jie, L.K. Muthusamy, H.N. Ruslan, N. Mohamad. Fresh and mechanical properties of concrete containing recycled fine aggregate as partial sand replacement. Mater. Today: Proceedings.

DOI: 10.1016/j.matpr.2023.06.331

Google Scholar

[36] A. Mardani, D. Hatungimana, S. Yazici, H. G Sahin, J.J. Assaad. Use of recycled mortar as fine aggregates in pavement concrete applications. Heliyon. 10 (2024) e24264.

DOI: 10.1016/j.heliyon.2024.e24264

Google Scholar

[37] Y. Jiang, B. Li, S. Liu, J. He, A.G Hernandez. Role of Recycled Concrete Powder as Sand Replacement in the Properties of Cement Mortar. J. Clean. Prod. 371 (2022) 133424.

DOI: 10.1016/j.jclepro.2022.133424

Google Scholar

[38] A.M. Wagih, H.Z. El-Karmoty, M. Ebid, S.H. Okba. Recycled construction and demolition concrete waste as aggregate for structural concrete. HBRC Journal, 9 (2013) 193-200.

DOI: 10.1016/j.hbrcj.2013.08.007

Google Scholar

[39] L. Yu, L. Huang, H. Ding, Rheological and mechanical properties of ultra-high-performance concrete containing fine recycled concrete aggregates, Materials 22 (2019) 3717

DOI: 10.3390/ma12223717

Google Scholar

[40] A. Singh, X. Miao, X. Zhou, Q. Deng, J. Li, S. Zou, Z. Duan. Use of recycled fine aggregates and recycled powders in sustainable recycled concrete.  J. Build. Eng.77 (2023) 107370.

DOI: 10.1016/j.jobe.2023.107370

Google Scholar

[41] K. Falek, K. Aoudjane, E.H. Kadri, F. Kaoua. Influence of recycled aggregates on the mechanical and tribological behavior of concrete. international conference on materials and energy, ICOME 15, 19-22 May 2015, Tetouan, Morocco, and ICOME 16, 17-20 May 2016, La Rochelle, France.

DOI: 10.1016/j.egypro.2017.11.237

Google Scholar

[42] L. Evangelista, J. de Brito. Durability Performance of Concrete Made with Fine Recycled Concrete Aggregates. Cem. Concr. Compos. 32 (2010) 9-14.

DOI: 10.1016/j.cemconcomp.2009.09.005

Google Scholar

[43] C.C. Fan, Ran. Huang, H. Hwang, S.J. Chao. Properties of Concrete Incorporating Fine Recycled Aggregates from Crushed Concrete Wastes. Constr. Build. Mater, 112(2016)708-715.

DOI: 10.1016/j.conbuildmat.2016.02.154

Google Scholar

[44] C.J. Zega, Á.A. Di Maio. Use of recycled fine aggregate in concretes with durable requirements. Waste Management, 31(2011) 2336-2340.

DOI: 10.1016/j.wasman.2011.06.011

Google Scholar

[45] H. Salahuddin, L.A. Qureshi, A. Nawaz, S.S. Raza. Effect of Recycled Fine Aggregates on Performance of Reactive Powder Concrete. Constr. Build. Mater. 243 (2020) 118223.

DOI: 10.1016/j.conbuildmat.2020.118223

Google Scholar

[46] A. Mardani-Aghabaglou, M. Tuyan, K. Ramyar. Mechanical and durability performance of concrete incorporating fine recycled concrete and glass aggregates. Mater. Struct. 48 (2015)

DOI: 10.1617/s11527-014-0342-3

Google Scholar

[47] A. Katz. Properties of Concrete Made with Recycled Aggregate from Partially Hydrated Old Concrete. Cem.Concr. Res. 33(2003) 703-711.

DOI: 10.1016/s0008-8846(02)01033-5

Google Scholar

[48] M. Martín-Morales, M. Zamorano, A. Ruiz-Moyano, I. Valverde-Espinosa. Characterization of recycled aggregates from construction and demolition waste for concrete production following the spanish structural concrete Code EHE-08. Constr. Build. Mater. 25 (2011) 742-748.

DOI: 10.1016/j.conbuildmat.2010.07.012

Google Scholar

[49] J. Ortiz, A. De La Fuente, F.M. Sebastia, I.Segura, A. Aguado. Steel-Fibre-Reinforced Self-Compacting Concrete with 100% Recycled Mixed Aggregates Suitable for Structural Applications. Constr. Build. Mater. 156 (2017) 230-241.

DOI: 10.1016/j.conbuildmat.2017.08.188

Google Scholar

[50] Z. Tahar, T.T. Ngo, E.H. Kadri, A. Bouvet, F. Debieb, S. Aggoun. Effect of cement and admixture on the utilization of recycled aggregates in concrete. Constr. Build. Mater. 149 (2017) 91-102.

DOI: 10.1016/j.conbuildmat.2017.04.152

Google Scholar

[51] M. Bravo, J. De Brito, L. Evangelista, J. Pacheco. Durability and shrinkage of concrete with construction and demolition waste as recycled aggregates: benefits from superplasticizer's incorporation and influence of CDW composition. Constr. Build. Mater. 168(2018) 818-830.

DOI: 10.1016/j.conbuildmat.2018.02.176

Google Scholar

[52] N. Bahrami, M. Zohrabi, S.A. Mahmoudy, A. Mahmood. Optimum Recycled Concrete Aggregate and Micro-Silica Content in Self-Compacting Concrete: Rheological, Mechanical and Microstructural Properties. J. Build. Eng. 31 (2020) 101361.

DOI: 10.1016/j.jobe.2020.101361

Google Scholar

[53] G. Chinzorig, M. Kwan Limb, M. Yuc, H. Leed, O. Enkbolda, D. Choia. Strength, shrinkage and creep and durability aspects of concrete including CO₂ treated recycled fine aggregate. Cem.Concr. Res. 136 (2020) 106062.

DOI: 10.1016/j.cemconres.2020.106062

Google Scholar

[54] T.V. Oliveira, L.N.P. Cordeiro, S.A.L. Bessa. Experimental study of self-leveling mortars produced with recycled concrete aggregates. Case Stud. Constr. Mater. 17 (2022) e01294.

DOI: 10.1016/j.cscm.2022.e01294

Google Scholar

[55] L. Evangelista. Durability of crushed fine recycled aggregate concrete assessed by permeability-related properties. Constr. Build. Mater. 71 (2019) 1142-1150.

DOI: 10.1680/jmacr.18.00093

Google Scholar

[56] S.K. Kirthika, S.K. Singh. Durability studies on recycled fine aggregate concrete. Constr. Build. Mater. 250 (2020) 118850.

DOI: 10.1016/j.conbuildmat.2020.118850

Google Scholar

[57] A.Z. Bendimerad. Influence of local additions on the physicochemical and mechanical properties of cement paste. Ph.D. thesis, The University of Nantes, 2020, 235 p.

Google Scholar

[58] S. Jesus, C. Maia, C. B. Farinha, J.de Brito, R .Veiga. Rendering mortars with incorporation of very fine aggregates from construction and demolition waste. Constr. Build. Mater. 229 (2019) 116844.

DOI: 10.1016/j.conbuildmat.2019.116844

Google Scholar

[59] T. Saiah., M. Adjoudj, A. Ait Mohamed Amer, K. Ezziane. Effect of replacing natural sand by quarry waste sand in recycled aggregate concrete. Eur. J. Environ. Civ. Eng. 28 (2024) 2310-2326

DOI: 10.1080/19648189.2024.2314102

Google Scholar

[60] BS EN 12390-3. (2019). Testing hardened concrete, Compressive strength of test specimen, Europeancommittee for standardization, 7p.

Google Scholar

[61] BS EN 12390-5. (2019). Testing hardened concrete. Flexural strength of test specimens, European committee for standardization, 7p.

Google Scholar

[62] BS 1881-122, Testing concrete – Method for determination of water absorption, BSI Standards Publication, 2020, 14p.

Google Scholar

[63] BS EN 12390-16. (2019). Testing hardened concrete: Determination of the shrinkage of concrete, European committee for standardization., 6p.

Google Scholar

[64] BS EN 12350-2, Testing fresh concrete: Slump test, European committee for standardization, Brussels (Belgium), 2019, 6 p.

Google Scholar

[65] H. Soualhi, E.H. Kadri, T.T. Ngo, A. Bouvet, F. Cussigh, S. Kenai, A new vane rheometer for fresh mortar: development and validation, Appl. Rheol. 24 (2014) 22594

Google Scholar

[66] EN 1015-18. Methods of test for mortar for masonry - determination of water absorption. European Committee for Standardization.

Google Scholar

[67] M. Hadjadj, M. Guendouz, D. Boukhelkhal. The Effect of Using Seashells as Cementitious Bio-Material and Granite Industrial Waste as Fine Aggregate on Mechanical and Durability Properties of Green Flowable Sand Concrete. J. Build. Eng. 87(2024)108968.

DOI: 10.1016/j.jobe.2024.108968

Google Scholar

[68] P. Sudjono, C.O. Yudhi. Estimasi Emisi CO2 Dari Pembangunan Berbagai Ukuran Rumah Sederhana. J. tek. lingkung. 17(2011) 98-109.

Google Scholar

[69] R.H. Suwarno, A.S. Yuwono. On the performance analysis and environmental impact of concrete with coal fly ash and bottom ash. Int. j. eng. technol. Innov. 13 (1) 2023.

DOI: 10.46604/ijeti.2023.10229

Google Scholar

[70] M. Westerholm, B. Lagerblad, E. Forssberg, Rheological Properties of micromortars containing fines from manufactured aggregates. Mater. Struct. 40 (2007) 615-625.

DOI: 10.1617/s11527-006-9173-1

Google Scholar

[71] N. Guerbas, M. Adjoudj, K. Ezziane. The Impact of Supplementary Cementitious Materials on the Rheological and Mechanical Properties of Mortars Based on Quarry Waste Sand. Studies in Engineering and Exact Sciences. 5 (2024) 770-798.

DOI: 10.2139/ssrn.4549276

Google Scholar

[72] M. Iqbal Khan, W. Abbass, M. Alrubaidi, F.K. Alqahtani. Optimization of the fine to coarse aggregate ratio for the workability and mechanical properties of high strength steel fiber reinforced concretes. Mater. 13 (2020) 5202.

DOI: 10.3390/ma13225202

Google Scholar

[73] E.L. Skare, S. Sheiati, R. Cepuritis, E. Mortsell, S. Smeplass, J. Spangenberg, S. Jacobsen. Rheology modelling of cement paste with manufactured sand and silica fume: comparing suspension models with artificial neural network predictions. Constr. Build. Mater. 317 (2022) 126114.

DOI: 10.1016/j.conbuildmat.2021.126114

Google Scholar

[74] A. Ait Mohamed Amer, K. Ezziane, A. Bougara, M. Adjoudj. Rheological and mechanical behavior of concrete made with pre-saturated and dried recycled concrete aggregates. Constr. Build. Mater. 123 (2016) 300–308.

DOI: 10.1016/j.conbuildmat.2016.06.107

Google Scholar

[75] M. Adjoudj, K. Ezziane, E.H. Kadri, T.T. Ngo, A. Kaci. Evaluation of rheological parameters of mortar containing various amounts of mineral addition with polycarboxylate superplasticizer. Constr. Build. Mater. 70 (2014) 549-559.

DOI: 10.1016/j.conbuildmat.2014.07.111

Google Scholar

[76] T. Li, R. Nogueira, J. de Brito, J. Liu, Influence of fine aggregate's morphology on mortars' rheology, J. Build. Eng., 63 (2023)105450

DOI: 10.1016/j.jobe.2022.105450

Google Scholar

[77] K. Arroudj, S. Dorbani, M.N. Oudjit, A. Tagnit-Hamou. Use of Algerian natural mineral deposit as supplementary cementitious materials, Int. J. Eng. Res. Afr. 34 (2018) 48-58.

DOI: 10.4028/www.scientific.net/jera.34.48

Google Scholar

[78] P. L. Meyyappan, P. Amuthakannan, R. Sutharsan, M. A. Ahamedazik. Utilization of M-Sand and basalt fiber in concrete: an experimental study on strength and durability properties. IOP Conference Series: Mater. Eng. Res, 561(2019) 012035.

DOI: 10.1088/1757-899x/561/1/012035

Google Scholar

[79] K.M. Mane, D.K. Kulkarni, K.B. Prakash. Near-Surface and chloride permeability of concrete using pozzolanic materials and manufactured sand as partial replacement of fine aggregate. Iran. J. Sci. Technol. - Trans. Civ. Eng. 45 (2021) 1427-1439.

DOI: 10.1007/s40996-020-00543-1

Google Scholar

[80] S. Bachene, M. Adjoudj, O. Boukendakdji, K. Ezziane. Elaboration of a Self-Compacting mortar based on concrete demolition waste incorporating blast furnace slag. Constr. Build. Mater. 366(2023)130165.

DOI: 10.1016/j.conbuildmat.2022.130165

Google Scholar

[81] D.M. Malhotra, G.G. Carette. Performance of Concrete Incorporating Limestone Dust as Partial Replacement for Sand. ACI Struct. J. 3(1985) 363-71.

DOI: 10.14359/10344

Google Scholar

[82] S.S.D. Anitha-selva, R. Gayathri, G. Swathi, Experimental investigation on quarry dust concrete with chemical admixture, Int. J. Late. Res. Sci. Eng. Technol. 2 (2013) 91-94.

Google Scholar

[83] S.P.S. Rajput, An experimental study on crushed stone dust as fine aggregate in cement concrete, Mater.Today: Proceedings. 5 (2018) 17540-17547.

DOI: 10.1016/j.matpr.2018.06.070

Google Scholar

[84] M.R. Lokeswaran, and C. Natarajan. Study on the properties of cement concrete using manufactured sand. Adv. Struct. Eng. (2014) 1803-1809.

DOI: 10.1007/978-81-322-2187-6_138

Google Scholar

[85] K. M. Mane,D. K. Kulkarni,K. B. Prakash. Performance of Various Pozzolanic Materials on the Properties of Concrete Made by Partially Replacing Natural Sand by Manufactured Sand. J. Build. Pathol. Rehab. 4 (2019) 1-9.

DOI: 10.1007/s41024-019-0061-9

Google Scholar

[86] S.C Kou., C.S Poon. Properties of concrete prepared with crushed fine stone, furnace bottom ash and fine recycled aggregate as fine aggregates, Constr. Build. Mater. 23(2009) 2877-2886.

DOI: 10.1016/j.conbuildmat.2009.02.009

Google Scholar

[87] Q. Wang, Y. Geng, Y. Wang, H. Zhang. Drying shrinkage model for recycled aggregate concrete accounting for the influence of parent concrete. Eng. Struct. 202(2020) 109888.

DOI: 10.1016/j.engstruct.2019.109888

Google Scholar

[88] N. Lahmar, F. Bouziadi, B. Boulekbache, E.H. Meziane, M. Hamrat, A. Haddi, C. Djelal. Experimental and finite element analysis of shrinkage of concrete made with recycled coarse aggregates subjected to thermal loading. Constr. Build. Mater. 247 (2020) 118564.

DOI: 10.1016/j.conbuildmat.2020.118564

Google Scholar

[89] G. Dreux, J. Festa, Nouveau guide du béton et de ses constituants (in freach), Editions Eyrolles, (1998), 418 p.

Google Scholar

[90] EN 1992-1-1: Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings, European Committee for Standardisation, (2004), 227 p.

Google Scholar

[91] ASTM C1074-93 (1993), Standard Practice for Estimating Concrete Strength by the Maturity Method, ASTM International, West Conshohocken, PA.

Google Scholar

[92] K. Ezziane, E. H. Kadri, A. Bougara, R. Bennacer. Analysis of mortars long-term strength with supplementary cementitious materials cured at different temperatures. ACI Struct. J. 107 (2010). 323-331.

DOI: 10.14359/51663857

Google Scholar

[93] E. Anastasiou, K. Georgiadis Filikas, M. Stefanidou, Utilization of fine recycled aggregates in concrete with fly ash and steel slag, Constr. Build. Mater. 50 (2014) 154–161.

DOI: 10.1016/j.conbuildmat.2013.09.037

Google Scholar

[94] I.O.f. Standardization, Environmental Management: Life Cycle Assessment; Principles and Framework, ISO, 2006.

Google Scholar

[95] S. Ross, D. Evans, M. Webber. How LCA studies deal with uncertainty. Int. J. Life Cycle Assess. 7 (2002) 47–52.

DOI: 10.1007/bf02978909

Google Scholar

[96] M. De Schepper, P. Van den Heed, I. Van Driessche, N. De Belie. Life cycle assesment of completely recyclable concrete. Mater. 7 (8) 201460106027.

DOI: 10.3390/ma7086010

Google Scholar

[97] Z. Guo, A. Tu, C. Chen, D.E. Lehman, Mechanical properties, durability and life-cycle assesment of concrete building blocks incorporating recycled concrete aggregate. J. Clean. Prod. 199 (2018) 136–149.

DOI: 10.1016/j.jclepro.2018.07.069

Google Scholar