[1]
E. Daho, Study of local aggregate potential for optimal use, Magister thesis, University of Abou Bekr Belkaid, Tlemcen, Algeria, 2012.
DOI: 10.47191/ijmscrs/v4-i01-15
Google Scholar
[2]
F. Faubert, Handbook of industrial rocks and minerals: Aggregates, BRGM Report R30157 GEO SGN 89, Bureau of Geological and Mining Research, Orléans, France, 1989.
Google Scholar
[3]
Central Laboratory of Roads and Bridges (L.C.P.C), LPC Liaison Bulletin, Special Issue XIV, First International Symposium on Aggregates, May 21-23, Nice, France, 1984.
Google Scholar
[4]
S.I. Adedokun, J.O. Awoleye, P.O. Abayomi, S.A. Ayanlere, Geochemical and Microstructural Characteristics of Lateritic Soil Treated with Steel Slag for Road Foundation Applications. JERA 73 (2025) 61-80.
DOI: 10.4028/p-pn1bu1
Google Scholar
[5]
H. Sellaf, B. Benamar, A. H. Mostefa, Exploring the Influence of Plastic Powder Incorporation on Geotechnical Properties of Expansive Soil Stabilized with Granite Powder for Building Applications. JERA 68 (2024) 85-97.
DOI: 10.4028/p-k5beqx
Google Scholar
[6]
K. Al-Shamsi, H. Hassan, K. Al-Jabri, M. Al-Alawi, Utilization of slag as an aggregate replacement for road base/subbase layers, IOP Conf. Ser. Mater. Sci. Eng. 1289 (2023) 012071.
DOI: 10.1088/1757-899x/1289/1/012071
Google Scholar
[7]
A. Karmakar, S. Pal, K. Bhattacharya, Utilization of coalmine overburden furnace slag and fly ash mixed cement-treated subbase/base course material for sustainable flexible pavements, mechanical performance and environmental impact, Environ. Sci. Pollut. Res. (2024) 1-18.
DOI: 10.1007/s11356-024-35469-y
Google Scholar
[8]
W. Li, S. Han, X. Han, Y. Yao, Experimental and numerical analysis of mechanical properties of geocell reinforced reclaimed construction waste composite base layer, Constr. Build. Mater. 304 (2021) 124587.
DOI: 10.1016/j.conbuildmat.2021.124587
Google Scholar
[9]
A. Larouci, Y. Senhadji, L. Laoufi, A. Benazzouk, Dredged Dam Raw Sediments Geotechnical Characterization for Beneficial Use in Road Construction. JERA (2021) 57 81–98.
DOI: 10.4028/www.scientific.net/jera.57.81
Google Scholar
[10]
N. Rehman, S.H. Ali, Z. Ullah, M. Kashif, M.A. Abid, A. Saleem, M. Yaseen, The evaluation of Khyber limestone in Pakistan for using as road aggregate based on geotechnical properties, Iran. J. Earth. Sci. 14 (2022) 252-262.
Google Scholar
[11]
J. Zhang, L. Ding, F. Li, J. Peng, Recycled aggregates from construction and demolition wastes as alternative filling materials for highway subgrades in China, J. Clean. Prod. 255 (2020) 120223.
DOI: 10.1016/j.jclepro.2020.120223
Google Scholar
[12]
D. Ciampa, R. Cioffi, F. Colangelo, M. Diomedi, I. Farina, S. Olita, Use of unbound materials for sustainable road infrastructures, Appl. Sci. 10 (2020) 3465.
DOI: 10.3390/app10103465
Google Scholar
[13]
O. Boudlal, A. Hamoudi, Valorization of marl and crystallized slag in pavement structures, Acad. J. Civ. Eng. 38 (2020) 238-245.
Google Scholar
[14]
L. Zeghichi, B. Mezghiche, A. Merzougui, S. Chabi, Study of the properties of concrete made with El Hadjar slag aggregates, Rev. Algérie Équipement 40 (2005) 6–9.
Google Scholar
[15]
NF EN 1926. Natural stone test methods, Determination of uniaxial compressive strength, French Standards Association (AFNOR), Paris, France, 2007.
Google Scholar
[16]
NF P 94-093. Soils, Investigation and testing, Determination of compaction reference values of a material, Standard Proctor and Modified Proctor tests, French Standards Association (AFNOR), Paris, France, 2014.
Google Scholar
[17]
NF P 94-078. Soils, Investigation and testing, CBR index after immersion, immediate CBR index, immediate bearing index, Measurement on a sample compacted in the CBR mould, French Standards Association (AFNOR), Paris, France, 1997.
Google Scholar
[18]
NF P 94-066. Soils, Investigation and testing, Fragmentability coefficient of rock materials, French Standards Association (AFNOR), Paris, France, 1992.
Google Scholar
[19]
NF P 94-067. Soils, Investigation and testing, Degradability coefficient of rock materials, French Standards Association (AFNOR), Paris, France, 1992.
Google Scholar
[20]
NF EN 1097-2. Tests for mechanical and physical properties of aggregates, Part 2: Methods for the determination of resistance to fragmentation (Los Angeles test), French Standards Association (AFNOR), Paris, France, 2020.
DOI: 10.3403/30373005
Google Scholar
[21]
NF EN 1097-1. Tests for mechanical and physical properties of aggregates, Part 1: Determination of resistance to wear (Micro-Deval), French Standards Association (AFNOR), Paris, France, 2023.
DOI: 10.3403/00892850u
Google Scholar
[22]
NF P 94-071. Soils, Investigation and testing, Direct shear test using the shear box apparatus, French Standards Association (AFNOR), Paris, France, 1994.
Google Scholar
[23]
S. Hamlat, Study of the resistance of road pavements to tangential stresses, PhD thesis, University of Nantes, France, 2007.
Google Scholar
[24]
V. Robitaille, D. Tremblay, Soil mechanics theory and practice, Modulo, Quebec, 1997.
Google Scholar
[25]
L. Zeghichi, B. Mezghiche, A. Merzougui, Influence of slag activation on the mechanical behavior of concrete, Lebanese Sci. J. 8 (2007) 105–113.
Google Scholar
[26]
N. Hacini-Chikh, N. Arabi, Steelmaking slag recycling as raw material and its effect on burning temperature of Portland cement clinker production, J. Mater. Civ. Eng. 36 (2024) 04023538.
DOI: 10.1061/jmcee7.mteng-16444
Google Scholar
[27]
O. Rahim, D. Achoura, M. Benzerara, C. Bascoulès-Perlot, Experimental contribution to the study of the physic-mechanical behavior and durability of high-performance concretes based on ternary binder (cement, silica fume and granulated blast furnace slag), Fract. Struct. Integr. 16 (2022) 344-358.
DOI: 10.3221/igf-esis.59.23
Google Scholar
[28]
S. Ghorbani, L. Stefanini, Y. Sun, B. Walkley, J.L. Provis, G. De Schutter, S. Matthys, Characterisation of alkali-activated stainless steel slag and blast-furnace slag cements, Cem. Concr. Compos. 143 (2023) 105230.
DOI: 10.1016/j.cemconcomp.2023.105230
Google Scholar
[29]
S. Solismaa, A. Torppa, J. Kuva, P. Heikkilä, S. Hyvönen, P. Juntunen, T. Kauppila, Substitution of cement with granulated blast furnace slag in cemented paste backfill: Evaluation of technical and chemical properties, Minerals 11 (2021) 1068.
DOI: 10.3390/min11101068
Google Scholar
[30]
C. Lian, Y. Wang, S. Liu, H. Hao, Y. Hao, Experimental study on dynamic mechanical properties of fly ash and slag based alkali-activated concrete, Constr. Build. Mater. 364 (2023) 129912.
DOI: 10.1016/j.conbuildmat.2022.129912
Google Scholar
[31]
N. Arabi, R. Jauberthie, A. Sellami, Autoclaved silico-calcareous bricks: influence of blast furnace slag addition on phase formation, Mater. Struct. 46 (2013) 181–190.
Google Scholar
[32]
P. Rossi, L. Gavois, G. Raoul, Blast furnace slags, technical and environmental recommendations, Techniques de l'Ingénieur, Reference Document C5380, Paris, France, 2014.
Google Scholar
[33]
S.I. Abu-Eishah, A.S. El-Dieb, M.S. Bedir, Performance of concrete mixtures made with electric arc furnace (EAF) steel slag aggregate produced in the Arabian Gulf region, Constr. Build. Mater. 34 (2012) 249–256.
DOI: 10.1016/j.conbuildmat.2012.02.012
Google Scholar
[34]
NF P 11-300. Earthworks execution, Classification of materials usable in the construction of embankments and subgrade layers of road infrastructures, French Standards Association (AFNOR), Paris, France, 1992.
Google Scholar
[35]
M. Guendouz, D. Boukhelkhal, M. Hadjadj, A. el Aziz Cherati, F. Meguraoui, I.L. Aissa, I. Zirari, Physical and mechanical performance of eco-friendly self-compacting sand concrete with industrial blast furnace slag waste as fine aggregate, Stud. Eng. Exact Sci. 6 (2025) e13625.
DOI: 10.54021/seesv6n1-020
Google Scholar
[36]
E. Rayssac, J.C. Auriol, D. Deneele, F. De Larrard, V. Ledee, G. Platret, Valorization of LD steelmaking slags for road infrastructures, Bull. Lab. Bridges Roads 275 (2009) 27-38.
Google Scholar
[37]
L. Nicoara, B. Cososchi, Observations on the use of steel slag in road engineering, Bull. Int. Assoc. Eng. Geol. 30 (1984) 439-442.
Google Scholar
[38]
A. Hadj Sadok, Behavior of mortars and concrete made with El Hadjar slag cement in aggressive environments, PhD thesis in Civil Engineering, Saad Dahlab University of Blida, Algeria, 2010.
Google Scholar
[39]
H. Cherfa, K. Ait Mokhtar, Valorization of industrial waste for pavement layer stabilization, the case of blast furnace slags, International Seminar Innovation and Valorization in Civil Engineering, February 5–7, Hammamet, Tunisia, 2009, p.79–89.
Google Scholar
[40]
F.Z. Melais, S. Melais, D. Achoura, R. Jauberthie, Valorization of blast furnace by-products in the production of a new range of sand concrete, J. Mater. Environ. Sci. 6 (2015) 735-742.
Google Scholar
[41]
NF EN 13-285. Unbound aggregates, Specifications, French Standards Association (AFNOR), Paris, France, 2018.
Google Scholar
[42]
Experimental Center for Research and Studies in Building and Public Works (C.E.B.T.P), Practical guide for pavement design in tropical countries, France, 1984.
Google Scholar
[43]
Moroccan Guide for Road Earthworks (G.M.T.R), Directorate of Roads and Road Traffic of Morocco, Booklet I, General principles, Morocco, 2001.
Google Scholar
[44]
C.I.M.béton, Construction of agricultural roads: the rise of concrete structures, Technical documentation, Routes No. 97, Cement Information Center, Paris, France, 2006.
Google Scholar
[45]
J.P. Magnan, Shear strength, Techniques de l'Ingénieur, The reference for technical and scientific expertise, C216, Paris, France, 2012.
Google Scholar