[1]
A.T. Akono, J. Chen, S. Kaewunruen, Friction and fracture characteristics of engineered crumb-rubber concrete at microscopic length scale. Construction and Building Materials, 175, (2018) 735–745.
DOI: 10.1016/j.conbuildmat.2018.04.141
Google Scholar
[2]
R. Wang, X. He, Y. Li, Evaluation of microcracks in the interfacial transition zone of recycled rubber concrete. Structural Concrete, 20, (2019) 1684–1694.
DOI: 10.1002/suco.201900044
Google Scholar
[3]
A. Gargouri, A. Daoud, A. Loulizi, A. Kallel, Laboratory Investigation of Self-Consolidating Waste Tire Rubberized Concrete. ACI Materials Journal, 113, (2016) 661–668.
DOI: 10.14359/51688991
Google Scholar
[4]
J. Mallek, A. Daoud, O. Omikrine-Metalssi, A. Loulizi, Performance of self-compacting rubberized concrete against carbonation and chloride penetration. Structural Concrete, (2021) 1–16.
DOI: 10.1002/suco.202000687
Google Scholar
[5]
N. Ganesan, J. Bharati Raj, A.P. Shashikala, Flexural fatigue behaviour of self-compacting rubberized concrete. Construction and Building Materials, 44, (2013) 7–14.
DOI: 10.1016/j.conbuildmat.2013.02.077
Google Scholar
[6]
A.S. Ali, T.M. Hasan, Flexural Behavior of Fiber Reinforced Self-Compacting Rubberized Concrete Beams. Journal of Engineering, 26(2), (2020).
DOI: 10.31026/j.eng.2020.02.09
Google Scholar
[7]
J. Mallek, O. Omikrine-Metalssi, A. Loulizi, A. Daoud, Durability of self-compacting rubberized concrete exposed to external sulphate attack. Case Studies in Construction Materials, 20, (2024) e02730.
DOI: 10.1016/j.cscm.2023.e02730
Google Scholar
[8]
K. Mushunje, M. Otieno, Y. Ballim, A review of waste tyre rubber as an alternative concrete constituent material. MATEC Web of Conferences, 199, (2018) 11003.
DOI: 10.1051/matecconf/201819911003
Google Scholar
[9]
S.M. Agampodi, S. Al-Deen, M. Ashraf, Effect of rubber particles on the flexural behaviour of reinforced crumbed rubber concrete beams. Construction and Building Materials, 154, (2017) 644–657.
DOI: 10.1016/j.conbuildmat.2017.07.220
Google Scholar
[10]
M.K. Ismail, A.A. Hassan, An experimental study on flexural behaviour of large-scale concrete beams incorporating crumb rubber and steel fibres. Engineering Structures, 145, (2017) 97–108.
DOI: 10.1016/j.engstruct.2017.05.018
Google Scholar
[11]
H.A. Alasmari, B.H. Abu Bakar, A.T. Noaman, A Comparative Study on the Flexural Behaviour of Rubberized and Hybrid Rubberized Reinforced Concrete Beams. Civil Engineering Journal, 5(5), (2019).
DOI: 10.28991/cej-2019-03091311
Google Scholar
[12]
N. Abu Bakar, M.R.N. Noaman, N.A.M. Nasir, N.A. Safee, Experimental evaluation of flexural behaviour of rubberized concrete beam. Asian Journal of Civil Engineering, (2019).
DOI: 10.1007/s42107-019-00159-5
Google Scholar
[13]
D. Sinkhonde, R. Ocharo Onchiri, W. Odhiambo Oyawa, J. Nyiro Mwero, Ductility performance of reinforced rubberized concrete beams incorporating burnt clay powder. Heliyon, 7, (2021) e08310.
DOI: 10.1016/j.heliyon.2021.e08310
Google Scholar
[14]
I.A. Sharaky, M.H. Seleem, A.S. Elamary, Minimizing the crumb rubber effects on the flexural behaviour of layered RC beams cast using rubberized concrete with or without recycled tire steel fibers. Construction and Building Materials, 400, (2023) 132503.
DOI: 10.1016/j.conbuildmat.2023.132503
Google Scholar
[15]
A. Abdo, M.T. Elshazli, Y. Alashker, S. Ahmed, Improving flexural response of rubberized RC beams with multi-dimensional sustainable approaches. Construction and Building Materials, 449, (2024) 138400.
DOI: 10.1016/j.conbuildmat.2024.138400
Google Scholar
[16]
CEB-FIP Model Code, fib Model Code for Concrete Structures. Comité Euro-International du Béton, 2010.
Google Scholar
[17]
AFNOR, NF EN 197-1, Cement - Part 1: composition, specifications and conformity criteria for common cements. April 2012.
Google Scholar
[18]
NF EN ISO 9001, Quality management systems – Requirements. October (2015)
Google Scholar
[19]
F. De Larrard, Concrete mixture proportioning: a scientific approach. London, UK: E&FN Spon; 1999, 448.
Google Scholar
[20]
AFNOR, EN 12350-6, Testing fresh concrete – Part 6: Density test. June 2019.
Google Scholar
[21]
AFNOR, EN 12350-8, Testing fresh concrete – Part 8: Self-compacting concrete – Slump-flow test. June 2019.
DOI: 10.3403/30210219
Google Scholar
[22]
AFNOR, EN 12350-10, Testing fresh concrete – Part 10: Self-compacting concrete – L box test. November 2010.
Google Scholar
[23]
AFNOR, EN 12350-11, Testing fresh concrete – Part 11: Self-compacting concrete – Sieve stability test. November 2010.
DOI: 10.3403/30210228u
Google Scholar
[24]
AFNOR, NF X15 206, Laboratory fume cupboards – Threshold for confinement and speed tests. August 2023.
Google Scholar
[25]
AFNOR, EN 12390-3, Testing hardened concrete – Part 3: compressive strength of test specimens. June 2019.
Google Scholar
[26]
AFNOR, EN 12390-6, Testing hardened concrete – Part 6: tensile splitting strength of test specimens. November 2023.
DOI: 10.3403/30454320
Google Scholar
[27]
AFNOR, NF EN ISO 179, Plastics - Determination of Charpy impact properties - Part 1: non-instrumented impact test. June 2023.
DOI: 10.3403/30192289
Google Scholar
[28]
Bulletin d'information N°158-E, Comité Euro International Du Béton (CEB) – Manual on cracking and déformation. 1985.
Google Scholar