Parametric Finite Element Analysis of Back-to-Back Mechanically Stabilized Earth (BBMSE) Walls on Sloped Ground: A PLAXIS 2D Case Study Investigating Geometry and Reinforcement Effects

Article Preview

Abstract:

Back-to-Back Mechanically Stabilized Earth (BBMSE) walls in near slopes present complex stability challenges not fully addressed in current design standards. While most previous studies focus on isolated retaining walls, this study pioneers the investigation of coupled mechanical interactions between twin BBMSE walls under slope inclination (β = 35°, 40° and 45°). Employing advanced finite element modeling (FEM) (PLAXIS 2D), we systematically analyze three governing parameters: (1) slope angle (β); (2) wall-to-slope crest distance (Lₓ = 0.5, 1 and 1.5 m), and (3) geosynthetic reinforcement stiffness (J = 1100, 5000 and 10000 kN/m). The results quantify how these parameters influence failure mechanisms, peak tensile forces, wall displacements, and lateral earth pressures. The outcomes demonstrate that geometric configuration (β ; Lx) and reinforcement stiffness (J) are critical for BBMSE walls system stability. The horizontal displacement of the walls was observed in unequal, as the value on the right wall was greater than the left wall (the difference reaches 17%) . and the maximum tension in soil reinforcement were found to be unequal between the right and left sides due to the slope. The results highlight the critical role of geometric configuration and reinforcement properties in enhancing the performance of back-to-back walls on sloped ground and these findings challenge conventional design approaches and provide actionable recommendations for optimizing BBMSE walls in sloped environments.

You might also be interested in these eBooks

Info:

Pages:

67-84

Citation:

Online since:

December 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.R. Berg, B.R. Christopher, N.C. Samtani, Design and Construction of Mechanically Stabilized Earth Walls and Reinforced Soil Slopes – Volume 1. Publication No. FHWA-NHI-10-024, U.S. Department of Transportation, Federal Highway Administration, Washington, D.C., 2009.

Google Scholar

[2] J. Han, D. Leshchinsky, Analysis of back-to-back mechanically stabilized earth walls, Geotextiles and Geomembranes. 28 (2010) 262-267.

DOI: 10.1016/j.geotexmem.2009.09.012

Google Scholar

[3] S.H. Lajevardi, M. Mohammadi, K. Dias, Numerical study of the behavior of back-to-back mechanically stabilized earth walls, Geotechnics 1 (2021) 18–37.

DOI: 10.3390/geotechnics1010002

Google Scholar

[4] S. Benmebarek, S. Attallaoui, N. Benmebarek, Interaction analysis of back-to-back mechanically stabilized earth walls, J. Rock Mech. Geotech. Eng. 8 (2016) 697-702.

DOI: 10.1016/j.jrmge.2016.05.005

Google Scholar

[5] S.M. Sravanam, U. Balunaini, R.M. Madhira, Behavior of connected and unconnected back-to-back walls for bridge approaches, Int. J. Geomech. 20 (2020) 06020013.

DOI: 10.1061/(asce)gm.1943-5622.0001692

Google Scholar

[6] A. Dram, U. Balunaini, S. Benmebarek, S. M. Sravanam, M. R. Madhav, Earthquake response of connected and unconnected back-to-back geosynthetic-reinforced soil walls, International Journal of Geomechanics, 21(11) (2021) 04021223.

DOI: 10.1061/(asce)gm.1943-5622.0002206

Google Scholar

[7] V.B. Chauhan, A. Srivastava, S. Jaiswal, S. Keawsawasvong, Behavior of back-to-back MSE walls: interaction analysis using finite element modeling, Transp. Infrastruct. Geotech. 10 (2023) 888-912.

DOI: 10.1007/s40515-022-00248-0

Google Scholar

[8] S. S. Vadavadagi, S. Chawla, Effect of rail axle load on geosynthetic reinforced back-to-back mechanically stabilized earth walls: Experimental and numerical studies, Transportation Geotechnics, 38 (2023) 100907.

DOI: 10.1016/j.trgeo.2022.100907

Google Scholar

[9] M. Yazdandoust, F. Daftari, Behavior of back-to-back mechanically stabilized earth walls as railway embankments, Geosynthetics International, 31 (2024) 785-805.

DOI: 10.1680/jgein.23.00126

Google Scholar

[10] A. Farik, S. Benmebarek, M. Djabri, Numerical investigations of GRS wall performance with tiered configurations, Studies in Engineering and Exact Sciences, 5 (2024) 01-21.

DOI: 10.54021/seesv5n2-031

Google Scholar

[11] O. Rahmouni, M. Belkebir, M. Baazouzi, M. Belhocine, A. Mabrouki, Numerical analysis of back-to-back mechanically stabilized earth walls subjected to dual railroad loadings, International Journal of Geotechnical Engineering. 19 (2025) 50-6.

DOI: 10.1080/19386362.2024.2445845

Google Scholar

[12] H. Bekkar, M. Djabri, A. Bouaicha, A. Farik, Numerical analysis of closer back-to-back reinforced soil walls: Effect of reinforcement arrangement. 2025.

DOI: 10.21203/rs.3.rs-7618712/v1

Google Scholar

[13] A. Fazel, A. Fahimifar, M. E. Tabrizi, J. N. Afshar, Numerical Analysis of Back-to-Back Geogrid-Reinforced Modular-Block Walls Under Service Stresses: Interaction Behavior and Design Insights, Geotech. Geol. Eng. 43 (2025) 97.

DOI: 10.1007/s10706-024-03064-0

Google Scholar

[14] S. Benmebarek, M. Djabri, FEM to investigate the effect of overlapping-reinforcement on the performance of back-to-back embankment bridge approaches under self-weight, Transp. Geotech. 11 (2017) 17-26.

DOI: 10.1016/j.trgeo.2017.03.002

Google Scholar

[15] M. Djabri, S. Benmebarek, Numerical investigations on the behavior of back-to-back mechanically stabilized earth walls: effect of structural components, Jordan J. Civil Eng. 14 (2020) 391-405.

Google Scholar

[16] S. Benmebarek, M. Djabri, FE analysis of back-to-back mechanically stabilized earth walls under cyclic harmonic loading, Indian Geotech. J. 48 (2018) 498-509.

DOI: 10.1007/s40098-017-0269-z

Google Scholar

[17] S.H. Mirmoradi, M. Ehrlich, L.F.O. Magalhães, Numerical evaluation of the effect of foundation on the behavior of reinforced soil walls, Geotext. Geomembr. 49 (2021) 619-628.

DOI: 10.1016/j.geotexmem.2020.11.007

Google Scholar

[18] A. Brouthen, M.N. Houhou, I.P. Damians, Numerical study of the influence of the interaction distance, the polymeric strips pre-tensioning, and the soil–polymeric interaction on the performance of back-to-back reinforced soil walls, Infrastructures. 7 (2022) 22.

DOI: 10.3390/infrastructures7020022

Google Scholar

[19] Y. Zheng, F. Li, X. Niu, G. Yang, Numerical investigation of the interaction of back-to-back MSE walls, Geosynth. Int. (2022) 1-54.

Google Scholar

[20] K. Hatami, R.J. Bathurst, Development and verification of a numerical model for the analysis of geosynthetic-reinforced soil segmental walls under working stress conditions, Can. Geotech. J. 42 (2005) 1066-1085.

DOI: 10.1139/t05-040

Google Scholar

[21] K. Hatami, R.J. Bathurst, Numerical model for reinforced soil segmental walls under surcharge loading, J. Geotech. Geoenviron. Eng. 132 (2006) 673-684.

DOI: 10.1061/(asce)1090-0241(2006)132:6(673)

Google Scholar

[22] A.A. Samee, M. Yazdandoust, A. Ghalandarzadeh, Effect of reinforcement arrangement on dynamic behaviour of back-to-back mechanically stabilised earth walls, Int. J. Phys. Model Geotech. 22 (2021) 1-38.

DOI: 10.1680/jphmg.20.00088

Google Scholar

[23] A. A. Samee, M. Yazdandoust, A. Ghalandarzadeh, Performance of back-to-back MSE walls reinforced with steel strips under seismic conditions, Transportation Geotechnics, 30 (2021) 100540.

DOI: 10.1016/j.trgeo.2021.100540

Google Scholar

[24] S. Attallaoui, S. Benmebarek, N. Benmebarek, Numerical analysis of seismic response of back-to-back mechanically stabilized earth walls, International Review of Civil Engineering, 15 (2024).

DOI: 10.15866/irece.v15i2.23538

Google Scholar

[25] B. Huang, R.J. Bathurst, K. Hatami, Numerical study of reinforced soil segmental walls using three different constitutive soil models, J. Geotechnical. Geoenvironmental. Eng. 135 (2009) 1486-1498.

DOI: 10.1061/(asce)gt.1943-5606.0000092

Google Scholar

[26] B. Huang, R.J. Bathurst, K. Hatami, T.M. Allen, Influence of toe restraint on reinforced soil segmental walls, Can. Geotech. J. 47 (2010) 885-904.

DOI: 10.1139/t10-002

Google Scholar

[27] A. Abdelouhab, D. Dias, N. Freitag, Numerical analysis of the behavior of mechanically stabilized earth walls reinforced with different types of strips, Geotextiles. Geomembranes. 29 (2011) 116-129.

DOI: 10.1016/j.geotexmem.2010.10.011

Google Scholar

[28] I.P. Damians, R.J. Bathurst, A. Josa, A. Lloret, Numerical study of the influence of foundation compressibility and reinforcement stiffness on the behavior of reinforced soil walls, Int. J. Geotech. Eng. 8 (2014) 247-259.

DOI: 10.1179/1939787913y.0000000039

Google Scholar

[29] Y. Yu, R.J. Bathurst, Y. Miyata, Numerical analysis of a mechanically stabilized earth wall reinforced with steel strips, Soils Found. 55 (2015) 536-547.

DOI: 10.1016/j.sandf.2015.04.006

Google Scholar

[30] Y. Yu, R.J. Bathurst, T.M. Allen, Numerical modeling of the SR-18 geogrid reinforced modular block retaining walls, J. Geotechnical. Geoenvironmental. Eng. 142 (2016) 04016003.

DOI: 10.1061/(asce)gt.1943-5606.0001438

Google Scholar

[31] U. Balunaini, S.M. Sravanam, M.R. Madhav, Effect of compaction stresses on performance of back-to-back retaining walls, in: Proc. 19th Int. Conf. Soil Mech. Geotech. Eng., London, (ISSMGE). (2017)1951-1954.

Google Scholar

[32] S.M. Sravanam, U. Balunaini, M.R. Madhav, Behavior and design of back-to-back walls considering compaction and surcharge loads, Int. J. Geosynth. Ground Eng. 5 (2019) 31.

DOI: 10.1007/s40891-019-0180-z

Google Scholar

[33] S.M. Sravanam, U. Balunaini, M.R. Madhav, Reinforcement tensile forces in back-to-back retaining walls, in: Geotechnical Applications. 4 (2018) 173-181.

DOI: 10.1007/978-981-13-0368-5_19

Google Scholar

[34] R.B.J. Brinkgreve, W.M. Swolfs, E. Engin, PLAXIS finite element code, Delft University of Technology & PLAXIS, The Netherlands, 2011.

Google Scholar

[35] AASHTO, LRFD Bridge Design Specifications, 6th ed., American Association of State Highway and Transportation Officials, Washington, D.C., 2012.

Google Scholar

[36] NF P 94-270, Calcul géotechnique – Ouvrages de soutènement – Remblais renforcés et massifs en sol cloué, French guidelines, 2009.

Google Scholar

[37] A. Dram, S. Benmebarek, U. Balunaini, Performance of retaining walls with compressible inclusions under seismic loading, Civil Eng. J. 6 (2020) 2474-2488.

DOI: 10.28991/cej-2020-03091631

Google Scholar

[38] G. Rajagopal, S. Thiyyakkandi, Effect of reinforcement stiffness on response of back-to-back MSE wall upon infiltration, Geosynthetics International, 29 (2022) 409–425.

DOI: 10.1680/jgein.21.00043

Google Scholar

[39] R. El-Sherbiny, E. Ibrahim, A. Salem, Stability of back-to-back mechanically stabilized earth walls, in: Geo-Congress 2013: Stability and Performance of Slopes and Embankments III, ASCE, (2013) 555-565.

DOI: 10.1061/9780784412787.058

Google Scholar