Fabrication of 4H-SiC Low Gain Avalanche Detectors (LGADs)

Article Preview

Abstract:

Low gain avalanche detectors (LGADs) offer high temporal resolution for high energy particle detection, which is critical for next generation experiments in hadron colliders. While silicon LGADs (Si-LGADs) have rapidly matured in the last decade, research into silicon carbide (SiC) LGADs has only recently begun. By accounting for fundamental differences in material properties and fabrication processes, we present a prototype device design and process flow for 4H-SiC LGADs with etch-based isolation. Critical steps of the process flow and their results are discussed, including plasma etching, passivation, and the formation of low resistivity contacts. Electrical characterization (I-V, C-V) shows sufficient depletion of the device structure to demonstrate low-gain charge carrier multiplication.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] Giacomini G (2021) Fabrication of Silicon Sensors Based on Low-Gain Avalanche Diodes, Front. Phys. 9:618621

DOI: 10.3389/fphy.2021.618621

Google Scholar

[2] DOE Basic Research Needs Study on Instrumentation for HEP, 2020 https://science.osti.gov/hep/Community-Resources/Reports

Google Scholar

[3] J. M. Rafí et al., "Electron, Neutron, and Proton Irradiation Effects on SiC Radiation Detectors," in IEEE Transactions on Nuclear Science, vol. 67, no. 12, pp.2481-2489, Dec. 2020.

DOI: 10.1109/TNS.2020.3029730

Google Scholar

[4] I. Capan, "4H-SiC Schottky Barrier Diodes as Radiation Detectors: A Review," Electronics, vol. 11, no. 4, p.532, Feb. 2022.

DOI: 10.3390/electronics11040532

Google Scholar

[5] T. Yang, B. Sekely, Y. Satapathy, G. Allion, P. Barletta, C. Haber, S. Holland, J. F. Muth, S. Pavlidis, S. Stucci, "Characterization of 4H-SiC Low Gain Avalanche Detectors (LGADs)" https://arxiv.org/abs/2408.12744

DOI: 10.1016/j.nima.2025.170873

Google Scholar

[6] Hartmut F-W Sadrozinski et al 2018 Rep. Prog. Phys. 81 026101

Google Scholar

[7] X. Guo, A. Beck, B. Yang, and J. C. Campbell, "Low dark current 4H-SiC avalanche photodiodes," in The 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2003, LEOS 2003, Tucson, AZ, USA: IEEE, 2003, pp.851-852.

DOI: 10.1109/LEOS.2003.1253068

Google Scholar

[8] M. Lazar et al., "Deep SiC etching with RIE," Superlattices and Microstructures, vol. 40, no. 4-6, pp.388-392, Oct. 2006.

DOI: 10.1016/j.spmi.2006.06.015

Google Scholar

[9] F. Simescu, D. Coiffard, M. Lazar, P. Brosselard, D. Planson, "Study of trenching formation during SF6/O2 reactive ion etching of 4H-SiC", Journal of Optoelectronics and Advanced Materials, Vol. 12, No. 3, March 2010, pp.766-769, url: https://joam.inoe.ro/articles/studyof-trenching- formation-during-sf6-o2-reactive-ion-etching-of-4h-sic/fulltext.

DOI: 10.1002/chin.199633263

Google Scholar

[10] Racka-Szmidt, K.; Stonio, B.; Zelazko, J.; Filipiak, M.; Sochacki, ˙ M. A Review: Inductively Coupled Plasma Reactive Ion Etching of Silicon Carbide. Materials 2022, 15, 123. https://doi.org/10.3390/ ma15010123

DOI: 10.3390/ma15010123

Google Scholar

[11] L. Jiang, R. Cheung, "Impact of Ar addition to inductively coupled plasma etching of SiC in SF6/O2", Microelectronic Engineering Vols. 73 - 74, 2004, pp.306-311.

DOI: 10.1016/j.mee.2004.02.058

Google Scholar

[12] Kang, I.H., Na, M.K., Seok, O. et al. Effect of surface passivation on breakdown voltages of 4H-SiC Schottky barrier diodes. J. Korean Phys. Soc. 71, 707-710 (2017)

DOI: 10.3938/jkps.71.707

Google Scholar

[13] M. Kato, A. Ogawa, L. Han, T. Kato, "Surface recombination velocities for 4H-SiC: Dependence of excited carrier concentration and surface passivation", Materials Science in Semiconductor Processing, Vol. 170, 2024

DOI: 10.1016/j.mssp.2023.107980

Google Scholar

[14] M. Sochacki et al. Diamond & Related Materials, 14 (2005) pp.1138-1141.

DOI: 10.1016/j.diamond.2004.12.020

Google Scholar

[15] L. Su et al., "Spatial Non-Uniform Hot Carrier Luminescence From 4H-SiC p-i-n Avalanche Photodiodes," in IEEE Photonics Technology Letters, vol. 31, no. 6, pp.447-450, 15 March15, 2019.

DOI: 10.1109/LPT.2019.2897742

Google Scholar

[16] Fei Liu, Jinlu Wang, Danbei Wang, Don Zhou, Hai Lu, "Photo-Electric response of 4H-SiC APDs at High-Level incident flux", Results in Physics, Vol. 50, 2023, 106608.

DOI: 10.1016/j.rinp.2023.106608

Google Scholar

[17] K. Ito et al., "Simultaneous Formation of Ni/Al Ohmic Contacts to Both n- and p-Type 4HSiC," Journal of Elec Materi, vol. 37, no. 11, pp.1674-1680, Nov. 2008, doi: 10.1007/s11664-008- 0525-1.

DOI: 10.1007/s11664-008-0525-1

Google Scholar

[18] M. Spera et al., Materials 2019, 12, 3468;

DOI: 10.3390/ma12213468

Google Scholar

[19] F. Roccaforte, F. La Via, and V. Raineri, "OHMIC CONTACTS TO SIC," Int. J. Hi. Spe. Ele. Syst., vol. 15, no. 04, pp.781-820, Dec. 2005.

DOI: 10.1142/S0129156405003429

Google Scholar

[20] Joo, SJ., Baek, S., Kim, SC. et al. Simultaneous Formation of Ohmic Contacts on p +- and n +-4H-SiC Using a Ti/Ni Bilayer. J. Electron. Mater. 42, 2897-2904 (2013)

DOI: 10.1007/s11664-013-2677-x

Google Scholar

[21] Fisher, C. A., Jennings, M. R., Sharma, Y. K., Sanchez-Fuentes, A., Walker, D., Gammon, P. M., Pérez-Tomás, A., & Thomas, S. M. (2014). On The Schottky Barrier Height Lowering Effect of Ti3SiC2 in Ohmic Contacts to P-Type 4H-SiC: Nanophysics. International Journal of Fundamental Physical Sciences, 4(3), 95-100

DOI: 10.14331/ijfps.2014.330071

Google Scholar

[22] L. Huang, M. Xia, and X. Gu, "A critical review of theory and progress in Ohmic contacts to p-type SiC," Journal of Crystal Growth, vol. 531, p.125353, Feb. 2020.

DOI: 10.1016/j.jcrysgro.2019.125353

Google Scholar