Development of Lead-Free Piezoelectric Thick Films with a/b-Axis-Oriented Bi4-xPrxTi3O12

Article Preview

Abstract:

Pr-substituted Bi4Ti3O12 (BPT, Bi4-xPrxTi3O12, x=0.1-0.4) polycrystalline thick films with a-/b-axes orientations and thickness of 2-3 μm were grown on sputter-grown IrO2 layers by chemical solution deposition method for developing lead-free piezoelectric film microdevices. Electric-field-induced strains measurements were performed by double-beam laser displacement meter and longitudinal strain of e=0.25 % under 400 kV/cm and piezoelectric coefficient d33=63 pm/V at 10 Hz were observed in BPT thick film of x=0.1 with a-/b-axes mixed orientations. The value of strain closely related to spontaneous polarization and monotonously decreased with increasing x. Microstructures of 3 μm-thick BPT films were fabricated by photolithography and dry etching processes with several tens micrometers in size.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

61-64

Citation:

Online since:

January 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] O. Auciello, J. F. Scott, and R. Ramesh, Phys. Today 51 (1998) p.22.

Google Scholar

[2] M. D. Maeder and D. Damjanovic, Piezoelectric Materials in Devices, edited by N. Setter, (EPFL, Lausanne, 2002), p.389.

Google Scholar

[3] S. Zhang, C. Randall, and T. R. Shrout, Appl. Phys. Lett. 83 (2003) p.3150.

Google Scholar

[4] B. H. Park, B. S. Kang, S. D. Bu, T. W. Noh, J. Lee, and W. Jo, Nature 401 (1999) p.682.

Google Scholar

[5] A. D. Rae, J. G. Thompson, R. L. Withers, and A. C. Willis, Acta Crystallogr., Sect. B: Struct. Sci. 46 (1990) p.474.

Google Scholar

[6] S. E. Cummins and L. E. Cross, J. Appl. Phys. 39 (1968) p.2268.

Google Scholar

[7] M. Soga, Y. Noguchi, M. Miyayama, H. Okino, and T. Yamamoto, Appl. Phys. Lett. 84 (2004) p.100.

Google Scholar

[8] R. Ramesh and D. G. Schlom, Science 296 (2002) p.1975.

Google Scholar

[9] H. N. Lee, D. Hesse, N. Zakharov, and U. Goesele, Science 296 (2002) p.2006.

Google Scholar

[10] T. Watanabe, H. Funakubo, K. Saito, T. Suzuki, M. Fujimoto, M. Osada, Y. Noguchi, and M. Miyayama, Appl. Phys. Lett. 81 (2002) p.1660.

Google Scholar

[11] H. Matsuda, S. Ito, and T. Iijima, Appl. Phys. Lett. 83 (2003) p.5023.

Google Scholar

[12] A. L. Kholkin, Ch. Wütchrich, D. V. Taylor, and N. Setter, Rev. Sci. Instrum. 67 (1996) p.1935.

Google Scholar

[13] K. Lefki and J. M. Dormans, J. Appl. Phys. 76 (1994) p.1764.

Google Scholar

[14] V. Nagarajan, A. Roytburd, A. Stanishevsky, S. Prasertchoung, T. Zhao, L. Chen, J. Melngilis, O. Auciello, and R. Ramesh, Nature Mater. 2 (2003) p.43.

DOI: 10.1038/nmat800

Google Scholar

[15] H. Uchida, I. Okada, H. Matsuda, T. Iijima, T. Watanabe and H. Funakubo, Jpn. J. Appl. Phys. 43 (2004) p.2636.

Google Scholar

[16] R. D. Shannon and C. T. Prewitt, Acta Crystallogr. Sect. B 25 (1969) p.925.

Google Scholar

[17] E. C. Subbarao, Phys. Rev. 122 (1961) p.804.

Google Scholar

[18] A. Saneto and L. E. Cross, J. Mater. Sci. 17 (1982) p.1409.

Google Scholar

[19] H. Matsuda, S. Ito and T. Iijima, Appl. Phys. Lett. 85 (2004) p.1220.

Google Scholar

[20] H. Okino, H. Matsuda, T. Iijima, S. Yokoyama, H. Funakubo, and T. Yamamoto, Mat. Res. Soc. Symp. Proc. 784 (2004) p.559.

Google Scholar

[21] H. Matsuda, S. Ito and T. Iijima, Jpn. J. Appl. Phys. 42 (2003) p.5977. hiro-matsuda@aist. go. jp.

Google Scholar