Key Engineering Materials
Vols. 342-343
Vols. 342-343
Key Engineering Materials
Vols. 340-341
Vols. 340-341
Key Engineering Materials
Vol. 339
Vol. 339
Key Engineering Materials
Vols. 336-338
Vols. 336-338
Key Engineering Materials
Vols. 334-335
Vols. 334-335
Key Engineering Materials
Vol. 333
Vol. 333
Key Engineering Materials
Vols. 330-332
Vols. 330-332
Key Engineering Materials
Vol. 329
Vol. 329
Key Engineering Materials
Vols. 326-328
Vols. 326-328
Key Engineering Materials
Vols. 324-325
Vols. 324-325
Key Engineering Materials
Vols. 321-323
Vols. 321-323
Key Engineering Materials
Vol. 320
Vol. 320
Key Engineering Materials
Vol. 319
Vol. 319
Key Engineering Materials Vols. 330-332
Paper Title Page
Abstract: In this study, an ACP-DCPD based Calcium phosphate cement (CPC) scaffold with a
porosity of 88% was prepared by using Na3PO4 as a poregen and then modified by collagen and
chitosan. The results showed that collagen and chitosan obviously increased the compressive
strength. Cell culture showed that the cell can migrate, attach, proliferate and differentiate on the
surface of the materials and the pores walls. This CPC scaffold modified with collagen or chitosan
was a promising material to be used in bone tissue engineering.
983
Abstract: We have developed a porous titanium implant sintered with spacer particles (porosity =
50 %, average pore size ± standard deviation = 303 ± 152 !m, yield compression strength = 100MPa).
This porous titanium was successfully treated with chemical and thermal treatment that gives a
bioactive micro-porous titania layer on the titanium surface, and it is expected as effective biomaterial
for biological fixation on load bearing condition. In this study, ten adult female beagle dogs
underwent anterior lumbar interbody fusion at L6-7 using either BT-implant or non-treated implant
(NT-implant), then followed by posterior interspinous wiring and facet screw fixation. The
radiographic evaluations were performed 1, 2 and 3 months postoperatively using X-ray fluoroscopy.
Animals were sacrificed after 3 months postoperatively, and fusion status was evaluated by manual
palpation. Histological evaluation was also performed. Both histological and radiological evaluation
revealed that interbody fusion was achieved in 5 of 5 dogs (100%) in BT-group and 3 of 5 dogs (60%)
in NT-group. In BT implants, we could observe a large amount of new bone formation from periphery
to the center of the implant, whereas in NT implants, fibrous tissue formation was still observed even
in the implants with successful fusion. The results of this study indicate that porous bioactive titanium
implant will represent a new osteoconductive biomaterial with improved fusion characteristics.
987
Abstract: Chemical treatment of polycaprolactone was carried out to bioactivite the
biodegradable polymer for bone tissue engineering application. The results show that surface
modifications are necessary to introduce functional groups such as carboxylic groups for the
effective induction of apatite nucleation, prior to SBF treatment. The functional groups, acting
as anchors between the polymer and the apatite nuclei, dictate the duration of the induction
period need for apatite nucleation. After the surface treatment with sodium hydroxide solution,
the apatite nuclei will form and grow spontaneously into a dense and uniform layer of apatite,
by taking up Ca2+ and PO4
2- ions that are present in the SBF, as SBF is supersaturated with
respect to apatite. Similar surface treatment was applied to electrospun PCL nanofibres.
Biomimetic apatite/PCL nanofibres were formed which can potentially be used as bone tissue
engineering scaffolds.
991
Abstract: Antibacterial Ag-doped TiO2 porous monolithics were firstly prepared by hybridization of
polyethylene glycol, Ti(OC4H9)4 and AgNO3 via sol-gel method following by heat-treatment to
remove the organic components. Thermogravimeter−differential thermal analysis, pore structure,
infrared spectra, ultraviolet−visible spectra, release speed of silver ions into 30°C water and
antibacterial properties of Ag-doped TiO2 samples made at different temperature were studied. The
results showed that anatase phase and uniform pore structure can be formed after heated at 500°C.
Ag+ ions from the samples heated at 500°C were stably released into water at 30°C up to 14 days. The
material treated at 500°C has the best antibacterial property and can restrain Escherichia coli
effectively.
995
Abstract: The present investigation gives a comparison of the structure and properties of porous
Ti6Al4V made by sponge replication (Sponge Ti) and directly 3D fiber deposition (D3DF Ti) and
cancellous bone. Although the macrostructure of these two materials differs, their microstructure
seems to be similar. Both scaffolds reveal an open pore structure, while D3DF Ti shows a fairly
regular open pore structure, sponge Ti6Al4V exhibit an irregular open pore structure similar to that
of cancellous bone. The mechanisms resulting in mechanical properties like stiffness or strength
are, accordingly, different. The compressive strength and E’ modulus of Ti6Al4V scaffold are
higher than that of cancellous bone,. The permeability results show both Ti6Al4V scaffolds are
quite comparable with cancellous bone.
999
Structural and Tissue Reaction Properties of Novel Hydroxyapatite Ceramics with Unidirectional Pores
Abstract: Porous ceramics of hydroxyapatite was fabricated utilizing the crystal growth of thin ice
columns parallel to one another in gelatin gel containing hydroxyapatite nanoparticles. The
obtained ceramics possessed unidirectional pore channels with a porosity of around 75% and
showed compressive strength of up to 13.1 MPa. As control materials, porous hydroxyapatite
ceramics with a directionless pore structure were also fabricated by isotropic freezing and compared
with the unidirectional samples regarding compressive strength and tissue reaction in vivo.
Although the porosity and pore size distribution were similar, the compressive strength and new
bone formation ability of the unidirectional samples were significantly greater than those of the
random structured porous ceramics.
1003
Abstract: Time-controlled releases of proteins from hydroxyapatite/chondroitin sulfate (HAp/ChS)
spherical microparticles were achieved by the addition of zinc cation into the mixture solutions of
HAp/ChS and protein as a novel formulation. The initial bursts of proteins, such as cytochrome c
and bovine serum albumin, were apparently suppressed by the amount of zinc cation, which could
be attributed to the formation of coordinate bonds of zinc cation among proteins and/or ChS
moleculars. The increase of molecular lengths of ChS chains decreased the adsorbed amount of
proteins, which did not apparently affected to the release of proteins.
1009
Abstract: The advantages of local antibiotic administration - high local levels with low systemic
toxicity - are nowadays recognized as an efficient way for anti-infection therapies consecutive to the
orthopaedic implant surgery. Aimed at assessing the feasibility of using Hydroxyapatite as drugdelivery
carrier in addition to its well-known bone reconstruction bioactivity, a pure HA ceramic
with specific internal pore size and porosities was under our investigation. The antibiotic release
and antibacterial effect were determined by UV spectrophotometry and disk agar diffusion assays
after impregnation with different antibiotics and their release in different solvents. No differences
were found after the ATB impregnation under normal pressure or under vacuum conditions. The
influences of impregnation time on the duration of the ATB release and on the antibacterial
efficiency were more evident for Vancomycin than for Ciprofloxacin and Gentamycin. In all cases,
the ATBs penetrated micro-porous and meso-porous HA samples and showed significantly stronger
and longer anti-bacterial effects than dense HA samples. The ATBs releases in PBS were relatively
slower and the antibacterial effectiveness subsequently prolonged with respect to those in human
plasma. All tested HA samples with or without ATB impregnation exhibited very good
biocompatibility as shown by cell proliferation tests. It revealed a promising perspective for further
improving the antibacterial efficiency by other surface functionalization methods for achieving a
controllable drug delivery with antibiotic loaded HA.
1013
Abstract: Calcium sulphate hemihydrate/α-tricalcium phosphate (CSH-TCP) cement are promising
bone replacement materials with controllable-degradation rate and setting time and excellent
delivery matrix for sustained release. In the present study, setting behaviors of binary bone cement
composed of α-TCP and CSH and release of ciprofloxacin from this cement were investigated in
vitro. XRD and SEM results demonstrated that the setting products of CSH-TCP cement were
calcium sulphate dihydrate with pillar morphology and hydroxyapatite with needle morphology.
Only 20% ciprofloxacin was released from CSH-TCP cement in 7 days in vitro. Fibers of
hydroxyapatite enhanced strength of binary cement through fiber-reinforce mechanism. At initial
stage (less than 100 hours), the release of ciprofloxacin from CSH-TCP cement was diffusion
control, and at subsequent stage the release was matrix dissolution & diffusion control.
1017
Abstract: A laminin–DNA–apatite composite layer was successfully formed on the surface of an
ethylene–vinyl alcohol copolymer. The immobilized DNA was transferred to the cells adhering
onto the laminin–DNA–apatite composite layer more efficiently than those adhering onto a lamininfree
DNA–apatite composite layer. It is considered that laminin immobilized in the surface layer
enhances cell adhesion and spreading, and DNA locally released from the layer is effectively
transferred into the adhering cells, taking advantage of the large contact area. The present gene
transferring system, which shows high efficiency and safety, would be useful in gene therapy and
tissue engineering.
1021