Key Engineering Materials
Vol. 347
Vol. 347
Key Engineering Materials
Vols. 345-346
Vols. 345-346
Key Engineering Materials
Vol. 344
Vol. 344
Key Engineering Materials
Vols. 342-343
Vols. 342-343
Key Engineering Materials
Vols. 340-341
Vols. 340-341
Key Engineering Materials
Vol. 339
Vol. 339
Key Engineering Materials
Vols. 336-338
Vols. 336-338
Key Engineering Materials
Vols. 334-335
Vols. 334-335
Key Engineering Materials
Vol. 333
Vol. 333
Key Engineering Materials
Vols. 330-332
Vols. 330-332
Key Engineering Materials
Vol. 329
Vol. 329
Key Engineering Materials
Vols. 326-328
Vols. 326-328
Key Engineering Materials
Vols. 324-325
Vols. 324-325
Key Engineering Materials Vols. 336-338
Paper Title Page
Abstract: A thermal shock experiment is designed to explore the thermal shock properties of
ceramic/metal gradient thermal barrier coating. The specimens are heated up by oxygen-acetylene flame
and cooled by water spray. The experiment procedure includes two stages, heating the specimen from the
initial temperature 30°C for 40s, and then cooling for 20s. The heat transfer and the associated thermal
stresses produced during the thermal shock procedure are simulated by finite element method.
Experimental results indicated that the specimen of gradient coating behaves better in thermal shock
experiments, which agree with the results of simulation.
1818
Abstract: Sodium-rich glasses of the system Na2O-SiO2 are well known to be easily soluble in water.
This is not true for silica-rich compositions. We have manufactured quenched glasses with silica contents
between 65 and 80 wt.% SiO2 and followed the water interaction at 100°C by measuring mass and sample
dimensions in intervals. Comparing the path of edge length, mass and volume to a general shrinking core
model for cuboids we conclude that only compositions between 65 and 70 wt% SiO2 can be described
well by a simple dissolution process. The logarithm of the dissolution rate constant varies linearly with
the SiO2 content. At higher silica contents the mechanism changes towards leaching of sodium. We
propose changing glass structures to be responsible for the change in mechanism.
1823
Abstract: Iron phosphate glasses with composition of 20Li2O-32Fe2O3-48P2O5 (in mol%) was
prepared by melting, crushing and heat-treating process and the electrical properties were examined.
It was found that the sample heat-treated at a temperature close to the glass transition temperature
exhibit the maximum conductivity and the lowest activation energy, implying that heat-treatment may
play an important role in the electrical properties of the glasses.
1827
Abstract: The phase-separation and the crystallization of SiO2-MgO-Al2O3-K2O-Fe2O3-F glass were
investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electron probe of
microanalyzers (EPMA). The results reveal that the varieties and the morphology of crystalline phases
formed depend sensitively on the thermal treatment schedules. During the isothermal treatments, the
crystalline phases of mica, mica and iron oxide (FeFeO4), and FeFeO4 as major crystals are precipitated in
the glass samples heat-treated at 900, 1000 and 1050°C respectively. However, the two-step heat
treatment beginning at 900°C for 1h and subsequently followed at 1050°C for 1h leads to the precipitation
of mica crystal and no any signs of FeFeO4 crystalline phase is observed. Also the morphology of sample
is different from that of the isothermally treated glass at 1050°C, but is similar from that of sample at
900°C. A “worm”-shaped phase-separation is observed in the sample heated at 800°C for 0.5h, which
exhibits different morphology from that of droplet- or globule-shape conventionally discerned. EPMA
results show that the incorporation of Fe2O3 accelerates accumulation of fluorine element, promoting the
phase-separation and the crystallization of the present glass.
1829
Abstract: Fluorophlogopite ceramics, which possesses very good machinability, high electrical
resistance and high dielectric strength, is very difficult to be sintered to fully dense state. It is usually
made through glass-ceramics processing. In this paper the effects of particle size distribution and
sintering agents on sintering of fluorophlogopite ceramics are investigated. The study concludes that
dense fluorophlogopite ceramics can be produced through ceramic processing, including careful
synthesis of fluorophlogopite powder as raw material, grinding with attrition mill, and pressureless
sintering with the help of plumbum contained boron silicate glass as sintering agent in the temperature
range of 1100 to 1200°C.
1833
Abstract: Depending on surface and crack crystallization mechanism, a new type of glass-ceramics as a
decorative building material has been obtained by using cracked-glass panel as precursor to replace glass
grains used in conventional sintering process. In the comparative and parallel experiment, cracked-glass
panels and glass grains were made from the same glass melt belonging to CaO-Al2O3-SiO2 family, and
were heat-treated parallelly and transformed into two types of glass-ceramics tagged as CG-GCs and
GG-GCs respectively. XRD patterns and SEM micrographs of CG-GCs demonstrate that cracked-glass
can deposit β-wollastonite. Properties tests show that the compactness of CG-GCs is higher than that of
GG-GCs, signifying that, in comparison to glass grains in conventional sintering process, using
cracked-glass panel as precursor in this study can reduce the porosity of end products. In addition, it is of
great interest that the polished surface of CG-GCs can exhibit excellent texture much different from
granular one of conventional GG-GCs.
1836
Abstract: The crystallization and sintering of the Li2O-Al2O3-SiO2 glass powder compacts were studied.
Results showed the relative densities of the sintered compacts with lower crystallization temperatures
were higher than those with higher crystallization temperatures. A small amount of residual glass in the
crystallized compact was good for sintering and densification. Compared with the heat treatment time, the
heat treatment temperature was an important factor for the crystallization and sintering of glass powder
compacts. The crystallized compacts with a small amount of residual glass should be sintered at a relatively
higher heating rate under the prerequisite of keeping sintered compacts from deformation.
1840
Abstract: This process and parameters of fabricating light calcium carbonate from limestone were
discussed in the paper. Raw limestone in experiment comes from Luquan city, Hebei province. The
results of chemistry and XRD analysis indicate that ingredient of this limestone is mainly calcium
carbonate, dolomite, silicon dioxide, which takes 83.81%, 11.03% and 1.67% separately, and a few of
other impurities. The process includes calcinations, assimilation, carbonation, drying and others. It was
ascertainable that the time of calcinations exceeded 5 hours at 850~ 950 and loss of calcinations was
42%. The time of assimilation was around 25 minutes at 70~90The time of carbonation was about 30
minutes at 50~90, and the airflow was about 160L/min and PH of latex after carbonation was 7.2~7.4.
The light calcium carbonate product was obtained in experiment, whose fine sphere size was about 10
nanometer, with the agglomeration particle size 2~3μm. The degree of white improved from 42 to 76. As
a result, the comprehensive properties of the produce were improved consumedly.
1843
Abstract: Upconversion luminescence of Er3+-doped SiO2-Al2O3-CaO-NaF-CaF2 transparent glass ceramics
under 980 nm excitation was investigated. XRD and TEM experiments revealed the homogeneous
distribution of CaF2 nano-crystals among the glassy matrix. Intense red upconversion signal was recorded
and its intensity increased with the increasing of heating temperature and Er3+-doping level at the range of
0.1 to 1.0 mol%. When Er3+ doping reached 2 mol%, the concentration quenching effect appeared. All
these results could be due to the incorporation of Er3+ ions into precipitated CaF2 nano-crystals. The
quadratic pump power dependence of the upconversion luminescence intensity indicated that the transition
mechanism of the red emission was due to two-photon absorption processes.
1846
Structuration and Fabrication of Sensors Based on LTCC (Low Temperature Co-Fired Ceramic) Technology
Abstract: The purpose of this paper is to demonstrate sensors and structures fabricated using the
LTCC technology, which has been addressed and employed increasingly as a smart packaging
approach for several applications. The focus will be on inclination and cantilever force sensors and
micro-fluidic structures. Motivation for selection of LTCC for these applications in addition to
fabrication and structuring of the devices will be explained in details. TGA (thermo-gravimetric
analysis), dilatometer analysis, SEM (scanning electron microscopy), electronic equipment for
measuring sensor performance will be extensively used for explanation of the results. It will also be
shown that, compared to classical thick-film technology on alumina, LTCC allows a considerable
increase in sensitivity, and is therefore better suited for the sensing of minute forces and pressures.
1849