Fabrication of Dielectric/Conductive Hybrid Artificial Superlattices Using Molecular Beam Epitaxy Method

Article Preview

Abstract:

Artificial super-lattices of [(BaTiO3)/(SrTiO3)10]4 (BTO10/STO10) were fabricated on STO(001) substrate by the molecular beam epitaxy method (MBE), and the molecular layers of SrRuO3(SRO) was introduced into these superlattices as conductive layers. The superlattices introduced two conductive layers showed the enormous dielectric permittivity. On the other hand, the permittivity of the superlattice introduced one conductive layer was almost same as that of BTO10/STO10. In the case of introducing two conductive layers, the moving electrons between two layers induced the interfacial polarization. Especially, the superlattice with two SRO conductive layers, the distance between these layers in a superlattice is 18 molecular layers, showed the highest relaxation frequency 132 kHz and biggest capacitance.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 421-422)

Pages:

139-142

Citation:

Online since:

December 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Iijima, T. Terashima, Y. Bando, K. Kamigai, and H. Terauchi, J. Appl. Phys. 72, 2840 (1992).

Google Scholar

[2] H. Tabata, H. Tanaka, and T. Kawai: Appl. Phys. Lett. 65, 1970 (1994).

Google Scholar

[3] T. Tsurumi, T. Suzuki, M. Yamane, and M. Daimon, Jpn. J. Appl. Phys. Part 1 33, 5192 (1994).

Google Scholar

[4] T. Tsurumi, T. Miyasou, Y. Ishibashi, and N. Ohashi, Jpn. J. Appl. Phys. Part 1 37, 5104 (1998).

Google Scholar

[5] T. Tsurumi, T. Ichikawa, T. Harigai, H. Kakemoto, and S. Wada, J. Appl. Phys. 91, 2284 (2002).

Google Scholar

[6] T. Shimuta, O. Nakagawara, T. Makino, S. Arai, H. Tabata and T. Kawai, J. Appl. Phys. 91, 2290 (2002).

Google Scholar

[7] T. Harigai, D. Tanaka, S. -M. Nam, H. Kakemoto, S. Wada, K. Saito and T. Tsurumi, Jpn. J. Appl. Phys. 43, 6530 (2004).

DOI: 10.1143/jjap.43.6530

Google Scholar

[8] T. Harigai, D. Tanaka, H. Kakemoto, S. Wada and T. Tsurumi, J. Appl. Phys. 94, 7923 (2003).

Google Scholar

[9] Y. Noro and S. Miyahara, J. Phys. Soc. Jpn. 27, 518 (1969).

Google Scholar

[10] A. E. Glazounov and A. K. Tagantsev, Phys. Rev. Lett., 85, 2192-95 (2000).

Google Scholar

[11] F. Gervais, F., Infrared and Millimeter Waves, Vol. 8, Ed. by Button, K. J., Academic press, New York (1983) pp.279-339.

Google Scholar

[12] S. Kamba, M. Kempa, V. Bovtun, J. Petzelt, K. Brinkman and N. Setter, J. Phys.: Condens. Matter, 17, 3965 (2005).

DOI: 10.1088/0953-8984/17/25/022

Google Scholar

[13] C. T. Moynihan, L. P. Boesch and N. L. Laberge, Phys. Chem. Glasses, 14, 122 (1973).

Google Scholar

[14] A. Segmuller and A.E. Blakeslee, J. Appl. Cryst., 6, 19 (1973).

Google Scholar

[15] Y. Ishibashi, N. Ohashi and T. Tsurumi, Jpn. J. Appl. Phys., 39, 186 (2000).

Google Scholar