Fabrication of Dielectric/Conductive Hybrid Artificial Superlattices Using Molecular Beam Epitaxy Method

Abstract:

Article Preview

Artificial super-lattices of [(BaTiO3)/(SrTiO3)10]4 (BTO10/STO10) were fabricated on STO(001) substrate by the molecular beam epitaxy method (MBE), and the molecular layers of SrRuO3(SRO) was introduced into these superlattices as conductive layers. The superlattices introduced two conductive layers showed the enormous dielectric permittivity. On the other hand, the permittivity of the superlattice introduced one conductive layer was almost same as that of BTO10/STO10. In the case of introducing two conductive layers, the moving electrons between two layers induced the interfacial polarization. Especially, the superlattice with two SRO conductive layers, the distance between these layers in a superlattice is 18 molecular layers, showed the highest relaxation frequency 132 kHz and biggest capacitance.

Info:

Periodical:

Key Engineering Materials (Volumes 421-422)

Edited by:

Tadashi Takenaka, Hajime Haneda, Kazumi Kato, Masasuke Takata and Kazuo Shinozaki

Pages:

139-142

DOI:

10.4028/www.scientific.net/KEM.421-422.139

Citation:

Y. Yonezawa et al., "Fabrication of Dielectric/Conductive Hybrid Artificial Superlattices Using Molecular Beam Epitaxy Method", Key Engineering Materials, Vols. 421-422, pp. 139-142, 2010

Online since:

December 2009

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.