Improved Electrical Properties and Thermal Stability of GeON Gate Dielectrics Formed by Plasma Nitridation of Ultrathin Oxides on Ge(100)

Article Preview

Abstract:

We demonstrated the impact of plasma nitridation on thermally grown GeO2 for the purposes of obtaining high-quality germanium oxynitride (GeON) gate dielectrics. Physical characterizations revealed the formation of a nitrogen-rich surface layer on the ultrathin oxide, while keeping an abrupt GeO2/Ge interface without a transition layer. The thermal stability of the GeON layer was significantly improved over that of the pure oxide. We also found that although the GeO2 layer is vulnerable to air exposure, a nitrogen-rich layer suppresses electrical degradation and provides excellent insulating properties. Consequently, we were able to obtain Ge-MOS capacitors with GeON dielectrics of an equivalent oxide thickness (EOT) as small as 1.7 nm. Minimum interface state density (Dit) values of GeON/Ge structures, i.e., as low as 3 x 1011 cm-2eV-1, were successfully obtained for both the lower and upper halves of the bandgap.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

152-157

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. L. Lee, C. W. Leitz, Z. Cheng, A. J. Pitera, T. Langdo, M. T. Currie, G. Taraschi, E. A. Fitzgerald, and D. A. Antoniadis, Appl. Phys. Lett. Vol. 79 (2001), p.3344.

DOI: 10.1063/1.1417515

Google Scholar

[2] C. O. Chui, S. Ramanathan, B. B. Triplett, P. C. McIntyre, and C. Saraswat, IEEE Electron Device Lett. Vol. 23 (2002), p.473.

DOI: 10.1109/led.2002.801319

Google Scholar

[3] K. Prabhakaran, F. Maeda, Y. Watanabe, and T. Ogino, Thin Solid Films Vol. 369 (2000), p.289.

Google Scholar

[4] K. Kita, S. Suzuki, H. Nomura, T. Takahashi, T. Nishimura, and A. Toriumi, Jpn. J. Appl. Phys. Vol. 47 (2008), p.2349.

Google Scholar

[5] H. Matsubara, T. Sasada, M. Takenaka, and S. Takagi, Appl. Phys. Lett. Vol. 93 (2008), p.032104.

Google Scholar

[6] T. Hosoi, K. Kutsuki, G. Okamoto, M. Saito, T. Shimura, and H. Watanabe, Appl. Phys. Lett. Vol. 94 (2009), p.202112.

DOI: 10.1063/1.3143627

Google Scholar

[7] M. Houssa, G. Pourtois, M. Caymax, M. Meuris, M. M. Heyns, V. V. Afanas'ev, and A. Stesmans, Appl. Phys. Lett. Vol. 93 (2008), p.161909.

DOI: 10.1063/1.3006320

Google Scholar

[8] S. Saito, T. Hosoi, H. Watanabe, and T. Ono, Appl. Phys. Lett. Vol. 95 (2009), p.011908.

Google Scholar

[9] C. O. Chui, F. Ito, and K. C. Saraswat, IEEE Electron Device Lett. Vol. 25 (2004), p.613.

Google Scholar

[10] D. Kuzum, A. J. Pethe, T. Krishnamohan, Y. Oshima, Y. Sun, J. P. McVittie, P. A. Pianetta, P. C. McIntyre, and K. C. Saraswat, Tech. Dig. – Int. Electron Devices Meet. (2007), p.723.

DOI: 10.1109/iedm.2007.4419048

Google Scholar

[11] T. Maeda, T. Yasuda, M. Nishizawa, N. Miyata, Y. Morita, and S. Takagi, J. Appl. Phys. Vol. 100 (2006), p.014101.

Google Scholar

[12] K. Kutsuki, G. Okamoto, T. Hosoi, T. Shimura, and H. Watanabe, Jpn. J. Appl. Phys. Vol. 47 (2008), p.2415.

Google Scholar

[13] S. R. Amy, Y. J. Chabal, F. Amy, A. Kahn, C. Krugg, and P. Kirsch, Mater. Res. Soc. Symp. Proc. Vol. 917E (2006), p.0917-E01-05.

DOI: 10.1557/proc-0917-e01-05

Google Scholar

[14] K. Kutsuki, G. Okamoto, T. Hosoi, T. Shimura, and H. Watanabe, Appl. Phys. Lett. Vol. 91 (2007), p.163501.

DOI: 10.1063/1.2799260

Google Scholar

[15] G. Okamoto, K. Kutsuki, T. Hosoi, T. Shimura, and H. Watanabe, Journal of Nanoscience and Nanotechnology (accepted).

Google Scholar

[16] K. Watanabe and T. Tatsumi, Appl. Phys. Lett. Vol. 76 (2000), p.2940.

Google Scholar